



# Introduction | to Microsoft SQL Server Big Data Clusters

Buck Woody - Applied Data Scientist  
Microsoft Data Platform Team

June 2019



# Data Growth

Computing and Storage advances impact data collection abilities

Microsoft  
SQL Server

TERADATA

mongoDB®



ORACLE®

Computing and Storage technologies allow greater data collection points

They also allow longer historical data storage, and as time goes on become part of that storage lineage

Walmart is a classic example of data proliferation and leverage

# Use-Cases

Every Industry classification  
benefits from Big Data, Retail and  
Finance leads the way



| Industry Sector | Primary Use-Cases                                 |
|-----------------|---------------------------------------------------|
| Retail          | <a href="#">Demand prediction</a>                 |
|                 | <a href="#">In-store analytics</a>                |
|                 | Supply chain optimization                         |
|                 | Customer retention                                |
|                 | Cost/Revenue analytics                            |
|                 | HR analytics                                      |
|                 | Inventory control                                 |
|                 | <a href="#">Cyberattack Prevention</a>            |
|                 | Fraud detection                                   |
| Finance         | Customer segmentation                             |
|                 | Market analysis                                   |
|                 | Risk analysis                                     |
|                 | Blockchain                                        |
|                 | Customer retention                                |
|                 | <a href="#">Fiscal control analytics</a>          |
| Healthcare      | Disease Prevention prediction and classification  |
|                 | Clinical Trials optimization                      |
|                 | Patient load analysis                             |
|                 | Episode analytics                                 |
|                 | <a href="#">Revenue prediction</a>                |
| Public Sector   | Education effectiveness analysis                  |
|                 | Transportation analysis and prediction            |
|                 | Energy demand and supply prediction and control   |
|                 | Defense readiness predictions and threat analysis |
|                 | <a href="#">Predictive Maintenance (PdM)</a>      |
| Manufacturing   | Anomaly Detection                                 |
|                 | Pattern analysis                                  |
|                 | <a href="#">Food Safety analysis</a>              |
| Agriculture     | Crop forecasting                                  |
|                 | Market forecasting                                |
|                 | Pipeline Optimization                             |

# Scale-Out Processing

# Scaled Processing and Scaled Storage

The foundations of scale



Hadoop



Spark





# Virtualization

Hardware Abstraction

Building on hardware, you can create a complete “PC” on top of a Hypervisor layer, which abstracts out the hardware. You still own the Operating System and up

This allows for scale by ring-fencing OS-level dependencies





# Containers

Abstracting the OS, Allowing complete portability

Containers go one level further than the Hypervisor, and focusing on binaries and applications

Storage and networking are a consideration

Scale is achieved through multiple containers



# Container Orchestration

## Containers at Scale

- Container(s) live in *Pods*
- Pod(s) are abstractions within *Nodes*
- Node(s) are PC's or VM's
- Cluster(s) are groups of Nodes
- Storage is by means of Volume(s) mounted through a *Claim*
- Routing provides external host name mapping and load balancing



# Generic Cluster

Scale by Purpose



# SQL Server

## Platform Evolution

Microsoft  
SQL Server



# SQL Server 2019 Big Data Cluster – Complete Architecture

# SQL Server 2019 and Big Data

Virtualization, Data Lake, Data Marts, and Spark



# High Value, OLTP Data



## LOB Apps

Application Calls to SQL Server Master Instance.  
Relational, multi-type, Graph, and ML features supported. No code change.

# SQL Server 2019 and Big Data

## Cluster Architecture: Data Lake, Data Mart, and Spark

Microsoft  
SQL Server

RED HAT<sup>®</sup>  
OPENSHIFT



# SQL Server 2019 Big Data – Data Virtualization

# SQL Server 2019 big data cluster

Microsoft  
SQL Server

RED HAT<sup>®</sup>  
OPENSHIFT



# Data Virtualization



# SQL Server 2019 and Big Data

## Data Virtualization



# SQL Server 2019 Big Data Cluster – Data Mart

# SQL Server 2019 big data cluster

Microsoft  
SQL Server

RED HAT<sup>®</sup>  
OPENSHIFT



# Data Mart



**Data Persistence Using Multiple Data Sources**  
Data Virtualization Scale-out calls through SQL Server Master Instance using External Tables, through the Compute Pool using PolyBase Connectors at the Source. Results are stored in the Shards of the Data Pool.



# SQL Server 2019 and Big Data

## Data Mart



SQL Server Big Data  
Cluster – Data Mart

# Example

# SQL Server 2019 Big Data Cluster – Data Lake, Machine Learning and Spark

# SQL Server 2019 big data cluster

Microsoft  
SQL Server

RED HAT<sup>®</sup>  
OPENSHIFT



# Data Lake, Scale, ML and AI



## Multiple Data Sources

Data Virtualization Scale-out calls through SQL Server Master Instance using External Tables through the Compute Pool to the Data Pool

## Scaled Data Analysis

Data Mart Scale-out calls through SQL Server Master Instance using External Tables into Data Pool. Direct calls to a Data Lake (HDFS) using the Storage Pool.



**AI Enablement**  
Prediction and Classification Scoring to AI apps using the App Pool



**Data Science**  
Data Engineering and Pipelines for Models with big data using Notebooks and other tools through to Spark, ingesting and processing data using the Storage Pool

Spark Query Notebook

# Example

# SQL Server 2019 Big Data Cluster – Tools, Management and Monitoring

SQL Server Big Data  
Cluster – Management  
and Monitoring

# Example

# Takeaways

- SQL Server 2019 Big Data cluster includes SQL Server together with the HDFS and Spark Compute engine as one package for big data processing, Machine Learning and AI
- Spark is a distributed compute engine that provides a unified framework for E2E big data processing pipeline including Machine learning and AI
- You can use SQL Server 2019 to create a secure, hybrid, machine learning architecture starting with data preparation, training a machine learning model, operationalizing your Model and using it for scoring
- *Go Do > Practice with installing, configuring, and operating SQL Server 2019*
- *Go Do > Download this deck and practice a demo on Big Data Clusters on SQL Server*
- *Go Do > Follow a complete workshop*

# Resources

- Official documentation – [aka.ms/bdc](https://aka.ms/bdc)
- In-depth training - [aka.ms/sqlworkshops](https://aka.ms/sqlworkshops)



# THANK YOU



[linkedin.com/company/Red-Hat](https://www.linkedin.com/company/Red-Hat)



[facebook.com/RedHatincl](https://www.facebook.com/RedHatincl)



[youtube.com/user/RedHatVideos](https://www.youtube.com/user/RedHatVideos)



[twitter.com/RedHat](https://twitter.com/RedHat)



# THANK YOU



[linkedin.com/company/Red-Hat](https://www.linkedin.com/company/Red-Hat)



[facebook.com/RedHatinic](https://www.facebook.com/RedHatinic)



[youtube.com/user/RedHatVideos](https://www.youtube.com/user/RedHatVideos)



[twitter.com/RedHat](https://twitter.com/RedHat)