Shifting the Data Center

Transitioning Red Hat IT to hybrid cloud infrastructure using OpenStack and Ceph Storage

Brian J. Atkisson, RHCA
Principal Architect

Matt Carpenter, RHCE
Principal Systems Administrator

May 9, 2019
Our approach to digital transformation

Roadmap illustrates conceptual “waypoints” that *guide* the work rather than specifying a detailed plan.
Nicole has dysentery.

Date: June 30, 1848
Weather: hot
Health: poor
Food: 242 pounds
Next landmark: 41 miles
Miles traveled: 948 miles
Fast growing company

- Focus on business enablement and customer support

- Rapidly changing environment and organic growth
 - New applications
 - New technologies
 - Tech debt

- Portfolio of applications often built on shoehorned systems
 - Modern app layers on legacy infrastructure
Legacy Environment
(this might sound familiar)
One data center to rule them all

- VMs and bare metal
- Config Management
- Appliances
 - Storage
 - Load balancers
- All eggs in one basket
Automation Difficulties

● Many individual systems cobbled together
● Integration was the exception
● Automation meant screen-scraping and chaining APIs
Excess Redundancy

From the Department of Redundancy Department

- Infrastructure uptime was key
- Double/triple built
 - Active/standby Networking
 - Multiple RHV clusters
 - Active/standby Storage heads
- Cold DR site

https://xkcd.com/703/
Application Architecture

- Applications assumed 100% infrastructure uptime
- Some would not tolerate device failovers
- Active/passive DBs
 - Manual failback
So this happened...

- HA services still resided in the same physical site
- DR failover unrealistic
- Application recovery took ages
Public Cloud Options

- Some apps moved to public cloud vendors
- Extension of data center
- Worst of both worlds
 - Named pets on someone else’s hardware
We could do better, let’s fix.
Kill the DB Monolith

- Effort to move data away from massive SQL databases
- Broke tight integration with DB
- SOA work gave way to stateless NoSQL and RESTful API data patterns
Single Sign On

- Deployed Red Hat SSO
 - Remove authentication responsibility from applications
 - Handles session management

- Multisite
 - MariaDB Galera
 - Jboss Data Grid
 - External User store
 - Mongo
 - IdM
OpenShift

- OpenShift changed deployment practices in a profound way
- Container-based design principles
- Migrating app tiers
 - Decouple application from state and data tiers
- Built-in Updates
Multisite Active
Development Pattern Prereqs

- Guard rails to ensure success
- Applications deployed on OpenShift
 - Stateless
 - Changes expected
- Session management delegated to SSO
- Loose coupling and/or microservices
- Graceful fault tolerance
Multisite Routing Strategies

- CDN handles Global Server Load Balancing
- Geographic Proximity
- Edge servers allow for advanced logic
Multisite Data Strategies

- Synchronous data storage
 - MariaDB Galera
 - JBoss Data Grid

- Eventual consistency
 - MongoDB
 - Directory Server / IdM

- Storage file and block replication
Multisite PaaS

- OpenShift deployed in three sites
- PaaS abstracted underlying infrastructure
- Front-end with a CDN
OpenStack and Ceph
Why OpenStack

- Faster Delivery of applications and services
- Vast automation potentials
- Empower development teams
- Infrastructure as code
- Lower cost through software-defined services
One Leg on OpenStack

- New data center
- Replace RHV with OpenStack
- Minimal appliances
 - Load Balancer -> Octavia + proxy layer
 - Storage -> Ceph
- RHII-V cluster
 - Bootstrapping
 - Utility services
OpenStack

- Not a virtualization solution
- Cloud ecosystem
 - Including virtualization
- Software-Defined Data Center
- Integrated APIs and CLI tools

https://www.openstack.org/software/
Legacy Stack

- NETWORK
 - Firewall
 - LB
 - Distrib. Switch

- COMPUTE
 - Red Hat Virtualization
 - Server Hardware

- STORAGE
 - Storage Appliance

OpenStack

- NETWORK
 - Basic Firewall
 - OSP Security Groups
 - OSP LBaaS (Octavia)
 - OSP SDN (Neutron)

- COMPUTE
 - OSP Compute (Nova)
 - Server Hardware

- STORAGE
 - OSP - Ceph
OpenStack Director

OVERCLOUD (Deployed Cloud)

- **CONTROLLER NODES**
- **COMPUTE NODES**
- **STORAGE NODES**

UNDERCLOUD (Director)

Deploy, configure & manage nodes
RHHI-V

- **RHHI-V**
 - Integrated RHV + Gluster

- **Hosts**
 - Director
 - Red Hat IdM, DHCP, monitoring

- **HA VMs and Snapshots**
OpenStack Overcloud

https://docs.openstack.org/tripleo-docs/latest/install/introduction/architecture.html
Solution Implementation
Availability Zones

- Zones
 - Failure domains
 - Resource islands

- Separate racks, server hardware, upstream network gear, power circuits, etc.

- Taking down one AZ has no impact on others

- Three zones
<table>
<thead>
<tr>
<th>AZ1</th>
<th>AZ2</th>
<th>AZ3</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYSICAL NETWORK STACK</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONTROLLER CLUSTER (3 NODES MIN)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMPUTE CLUSTER (6+ NODES)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEPH CLUSTER (3 NODES MIN)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UTILITY RHV/RRHI CLUSTER (3 NODES MIN, BACKED BY CLUSTER)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BARE METAL UTILITY</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Network Integration

- Provider Networks
 - Stretched VLANs spanning availability zones
 - Faster, shared resource

- Tenant Networks
 - Private overlay networks
 - Slower, more secure

- Security Groups
Load Balancing - Octavia

- Quick and simple OpenStack native load balancing
- Advanced logic in application tiers
- Individual Amphora provides failure domain separation
Ceph Storage

● Benefits
 ○ Software-defined
 ○ Cheaper, reliable
 ○ Scale-out
 ○ Block, Object and File storage

● Use-cases
 ○ VM disk storage
 ○ Glance image storage
Lessons Learned
OSP Long Life Releases

- **Historical cadence**
 - 1 - 2 major releases per year

- **Long Life releases**
 - 5 years of support
 - 3 years production
 - 2 years extended life

- **Short Life releases**
 - 1 year of support

- We settled on OSP 13
Use Cases

- OpenShift
- Non-container workloads
- Red Hat SSO
 - Multicast
- Databases
- IdM
- LucidWorks
- Legacy workloads
IdM and Ansible Integration

- OpenStack Novajoin
 - Native IdM integration
 - Secures all endpoints automatically (~100 certs)

- Ansible for project provisioning
 - Creates IdM host
 - Provision VM, load balancer, storage
 - Scale-up events
 - Tower API endpoint for playbook
Load Balancing

- TLS terminate and re-encrypt not supported in Octavia
 - Drove some design, ie CDN & App tier

- Stretch VLANs between the AZs for Octavia
 - One virtual IP(VIP) on all three AZs

- Embrace simple
Autoscaling

- Heat-based templates, harder to implement auto scaling than hoped
- Tooling is there for your own solution
- Template-based provisioning accelerates scaling
Questions?
RED HAT I.T.
Powered by Red Hat Products

Ask us how it’s done

Visit us at the “Ask Me Anything” booth and ask us about how we implement and deploy Red Hat products!

redhat.com/redhat-on-redhat
<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Event Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thurs, May 9</td>
<td>3:15 - 4:00pm</td>
<td>Developing and running cloud-native apps on OpenShift in Red Hat's IT organization</td>
</tr>
<tr>
<td>Thurs, May 9</td>
<td>3:15 - 4:00pm</td>
<td>Developing and deploying applications in a multisite hybrid cloud</td>
</tr>
</tbody>
</table>
THANK YOU

plus.google.com/+RedHat
linkedin.com/company/red-hat:
youtube.com/user/RedHatVideos
facebook.com/redhatinc
twitter.com/redhat