A Fully Automated VNF Performance Benchmarking Solution for RHOSP13 based NFVI

Bin Zhou, Lijun Gu, and Shuang Yang
Lenovo Cloud Technology Center

Red Hat Summit 2019
Lenovo Performance Optimized NFVI Solutions

At Lenovo, we are creating a leading, open, optimized and independently validated NFV solution platform to deliver high value and performance oriented applications for CoSPs to serve their customers.
What we need from NFV Solutions

Agility
- Faster provisioning and time to market
- Effortless customer experience

Performance
- Optimized VNF networking performance
- Guaranteed SLA

Low cost
- Reduced cost of hardware, operations, etc
- Higher utilization

Dynamic
- Network on-demand, increased reliability, flexibility
- Analytics “big data”
Why do we need benchmarking the NFV solution

<table>
<thead>
<tr>
<th>Carrier Grade Conformance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comprehensive information for CSP to plan, procure and deploy NFV</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>quantitative baseline on a specified infrastructure</td>
</tr>
<tr>
<td>Comparison of different solutions</td>
</tr>
<tr>
<td>NFV workload dimensions and stress vectors</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Automation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setup the NFVI and testing environment</td>
</tr>
<tr>
<td>Provide quick validation of a known setup/configuration</td>
</tr>
<tr>
<td>Collect various KPIs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Agility</th>
</tr>
</thead>
<tbody>
<tr>
<td>VNF onboarding</td>
</tr>
<tr>
<td>Onboard new HW or SW acerbation solutions</td>
</tr>
</tbody>
</table>

Red Hat Summit 2019
Benchmark Platform Design Strategies

- Reproducible (reusable model-driven deployment & configuration templates)
 - Target environment
 - Testing environment
 - Benchmark results
- Build on Open Source solutions
- Full automation, Launch and validate the VNF solution on demand
- Dev-ops or CI/CD integration
- Store benchmarking data for future analysis
- Dashboard for easy visualization and comparisons
Benchmarking tools

Phoronix Test Suite

OPNFV Yardstick/NSB
- OPNFV QTIP
- OPNFV VSPERF
- OPNFV STORPERF

OpenStack Rally
OpenStack Monasca
OpenStack Celometer

Backed by [OpenBenchmarking.org](https://www.openbenchmarking.org)
Framework to manage 300+ test cases and benchmark utilities.
Profiles CPU, memory, storage, networking, and application workloads.
Pre-defined test suites available for sane benchmarking profiles
Extensible for custom test cases and suites
Defines a generic schema for gathering metrics

Backed by OPNFV
Native OpenStack VIM integration
Build-in TG and SUT configurations
Full automation – one click execution, data collection and visualization
Rich metrics – loss rate, throughput…
Integrated with data store and visualization

Red Hat Summit 2019
NFVI Benchmarking Platform in a glance

Workflows
- Jenkins Master
- Jenkins workers

Execution engines
- PTS
- NSB

Visualization & Analytics
- Kibana
 - Elastic Search
 - LOC Analytics

Data Store
- PIM Profiles
- VIM Config
- Benchmarks

Red Hat Summit 2019
CI/CD Pipeline

Changes on target cloud:
- PIM layer
 - New hardware
 - Driver, firmware upgrade
- VIM layer
 - Configuration changes
 - Software upgrade
- VNF
 - New VNFs
 - Software upgrade

Red Hat Summit 2019
Examples of Test Suites

- ArrayFire (GPU/CPU)
- Lzbench (CPU)
- R Benchmark
- MixBench
- OctaneBench (NVIDIA CUDA)

- Stream (RAM)
- MBW
- RAMSpeed SMP

- AIO-Stress
- Iozone
- FS-Mark

- NSB-Prox Baremetal
- NSB-Prox-DPDK-L3FWD
- Trex-SRIOV-L3FWD
- iPerf
- NetPerf
- Sockperf

- PlaidML
- MariaDB
- NGINX Benchmark
- Memcached
- SysBench
- Tensorflow

Red Hat Summit 2019
Structured KPI Data

<table>
<thead>
<tr>
<th>Table</th>
<th>JSON</th>
</tr>
</thead>
<tbody>
<tr>
<td>_id</td>
<td>g9a8K2oBct0Qic59vEnH</td>
</tr>
<tr>
<td>_index</td>
<td>phonix_test_result</td>
</tr>
<tr>
<td>_score</td>
<td>1</td>
</tr>
<tr>
<td>_type</td>
<td>doc</td>
</tr>
<tr>
<td>data_average</td>
<td>292.05</td>
</tr>
<tr>
<td>data_max</td>
<td>292.736</td>
</tr>
<tr>
<td>data_min</td>
<td>291.453</td>
</tr>
<tr>
<td>data_raw</td>
<td>292.736:291.653:291.761</td>
</tr>
<tr>
<td>environment</td>
<td>RHOS External Ceph</td>
</tr>
<tr>
<td>group_identifier</td>
<td>External Ceph - Ephemeral Volume - 4-17/2019</td>
</tr>
<tr>
<td>hostname</td>
<td>pts-test-localdomain</td>
</tr>
<tr>
<td>run_identifier</td>
<td>RHOS External Ceph Test pts/c-ray Build #283</td>
</tr>
<tr>
<td>run_identifier_scale</td>
<td>RHOS External Ceph Test pts/c-ray Build #283</td>
</tr>
<tr>
<td>system_hardware</td>
<td>Processor: 4 x Intel core (skylake irix) @ 2.20GHz (4 cores), Motherboard: Red Hat openstack compute (1.1.0-2.0.17 RIos), Memory: 1 x 8192 MB RAM, Disk: 23GB, Graphi cs: cirrusdriMB</td>
</tr>
<tr>
<td>system_software</td>
<td>OS: CentOS Linux 7, Kernel: 3.10.0-957.el7.x86_64 (x86_64), Compiler: GCC 4.8.5 20150623, File-System: xfs, Screen Resolution: 1024x768, System Layer: KVM</td>
</tr>
<tr>
<td>test_description</td>
<td>Total Time - 4K, 16 Rays Per Pixel</td>
</tr>
<tr>
<td>test_proportion</td>
<td>LIB</td>
</tr>
<tr>
<td>test_scale</td>
<td>Seconds</td>
</tr>
<tr>
<td>test_suite</td>
<td>pts/c-ray-1.2.0</td>
</tr>
<tr>
<td>test_title</td>
<td>C-Ray</td>
</tr>
<tr>
<td>timestamp</td>
<td>April 17th 2019, 06:23:54.000</td>
</tr>
<tr>
<td>vm_count</td>
<td>1</td>
</tr>
</tbody>
</table>

Red Hat Summit 2019
Dashboard of benchmarking results

Red Hat Summit 2019
Examples of Test Suites
Examples of Test Suites
Demo Use Case: VIM configuration SR-IOV vs DPDK vs Bare Metal
Demo Use Case: VIM configuration SR-IOV vs DPDK vs Bare Metal
Summary

Performance
- Multi-dimensional
- Across all layers NFV architecture

Automation
- Reproducible anytime, anyplace

CI/CD
- Find issue before production deployment

Tool sets
- Open Source
- PTS + NSB + Rally + …
Thank you!