
REIMAGINING MONOLITHS WITH DDD
Using domain-driven design to reimagine monolithic
applications in a world of microservices

Eric Murphy and Aleš Nosek
Red Hat Consulting Architects
May 8, 2019

INTRODUCTIONS

Eric Murphy
● Architect
● App Dev Center of Excellence

Fun Fact: Co-authored Creating
Applications with Mozilla, O’Reilly, 2002

Aleš Nosek
● Red Hat Certified Architect
● Consulting, West Region

Fun Fact: Worked at SUSE on open source
projects, then worked on proprietary
products. Felt guilty, so came to work on
open source at Red Hat!

● Not a full introduction to Domain Driven Design (DDD)
● Practical focus on DDD — Keep it simple, stupid (KISS principle)
● Technical, rather than high level

○ Show me the code!
○ Special focus on using Quarkus/Vert.x, but transferable to other

technologies
● Consider using DDD with monolithic architecture as the preferred choice

for brand new applications
○ Take today’s advice back to your team

TODAY’S DISCUSSION

SOA AND MONOLITHS

2012:
DREAD FOR

X

MICROSERVICES!

2012:
HYPE FOR

✓

SERVERLESS (FUNCTIONS)!

2018:
HYPE FOR

✓

MONOLITHS

2012-2018:
DISDAIN FOR

X

MONOLITHS

Today:
RETHINKING

?

Not all apps should be
microservices or functions

WHY RETHINK MONOLITHS?

Monoliths can easily be split
into microservices or functions

if designed correctly

WHY RETHINK MONOLITHS?

Domain-Driven Design (DDD)
can guide you in building

monoliths that are decomposable

WHY RETHINK MONOLITHS?

You don’t have to be “locked in”
to a monolithic architecture
when building a monolithic

application

WHY RETHINK MONOLITHS?

DOMAIN-DRIVEN DESIGN (DDD)

● Merge your business domain with software modeling
● Special focus on:

○ Capturing how users interact with the software (via event storming
activities)

○ Identifying clusters of domain objects in the system (aggregates)
○ Finding boundaries within business domain (bounded context)

● Check https://en.wikipedia.org/wiki/Domain-driven_design for a great
summary!

● Warning: DDD content is often very academic and dry, but invaluable to
modeling a domain and effectively designing modern software

DOMAIN-DRIVEN DESIGN (DDD)

https://en.wikipedia.org/wiki/Domain-driven_design

● Domain-Driven Design Quickly
● Summary of Eric Evan’s definitive book
● Online version available for free (Google it)

RECOMMENDED READING

16

● Facilitated group learning practice using Gamestorming and the principles
of domain-driven design (DDD)

● https://openpracticelibrary.com/practice/event-storming/
● Red Hat Open Innovation Labs leverages the Event Storming practice
●

EVENT STORMING

https://openpracticelibrary.com/practice/event-storming/

17

● Events which help define the internal functionality of the software
● Commands (Actions) initiated by a user or policy/procedure
● Aggregates (Entities) which maintain application state

○ Aggregate Root which is the top level of an Aggregate hierarchy
■ May identify transactional boundaries within the software

● May identify separate services or microservices
● Bounded Context which identifies boundaries between business domains

○ May identify separate applications or services
● Read Models which allow data to be efficiently retrieved
● Screen Layouts which visually represent data to a user (optional)

EVENT STORMING OUTPUTS

● Events
● Commands (Actions)
● Aggregates (Entities)
● Bounded Context (Services)
● Read Models (Data Views)
● Screen Layouts

EVENT STORMING OUTPUTS (SIMPLIFIED)

● Events → PhotoCreated
● Commands (Actions) → createPhoto()
● Aggregates (Entities) → Photo
● Bounded Context (Services) → PhotoService
● Read Models (Data Views) → PhotoWithLikes

○ Combines data from two bounded contexts, photos, and likes
○ We will see the details in our example application

● Screen Layouts → Add Photo page
●

EVENT STORMING (TO CODE)

BUILDING A (MODULAR) MONOLITH
WITH AN EYE TOWARDS

MICROSERVICES

1. Source Control Modularity
○ Utilize multiple Git repositories for 1 monolithic application
○ Scale your application development across teams (programming in the large)

2. Build Modularity
○ Utilize Maven Modules or Gradle Projects for building discrete application components

3. Code Modularity
○ Utilize Java (9+) modules to provide granular (package level) contractual guarantees during

compile time
○ Separate API code from Implementation code
○ Emit and listen for events for cross-module communication

■ Don’t call another module’s code directly
4. Data Modularity

○ Do not create tight coupling of data between modules

4 LEVELS OF MONOLITHIC MODULARITY

✓ Source Control Modularity
✓ Build Modularity
✓ Code Modularity
✓ Data Modularity

New:

5. Deployment Modularity
○ Deploying multiple microservices/functions instead of one application
○ May involve partitioning data into separate deployed databases
○ Inter-service rather than intra-service communication

■ Propagate events between services using a network transport
○ User interface or clients must use multiple services

(potentially through an API aggregator)

5 LEVELS OF MICROSERVICE MODULARITY

Warning: Distributed System!

DDD SUPPORTS DEPLOYMENT MODULARITY

● Partitioned microservices/functions
○ Commands (Actions) - separate API per microservice
○ Bounded Context (Services)

● Partitioned microservice/function data stores
○ Aggregates (Entities)
○ Read Models (Data Views)

■ Screen Layouts
● Inter-service communication (event-based)

○ Events - propagated through a distributed bus between
services in an asynchronous manner

●

By leveraging DDD and
modularity, you can build an

application that may be either a
monolith or microservices

WHAT’S THE POINT?

PHOTO GALLERY SAMPLE
APPLICATION

PHOTO GALLERY SAMPLE APPLICATION

●
○ Photos Service
○ Likes Service
○ Query Service

PHOTO GALLERY SAMPLE APPLICATION

● Photo Gallery Monolith
○ Photos Service
○ Likes Service
○ Query Service

Option #1

PHOTO GALLERY SAMPLE APPLICATION

●
○ Photos Microservice
○ Likes Microservice
○ Query Microservice

Option #2

Same code, same modular
design, different deployment

options

WHAT’S THE POINT?

Monolithic deployments avoid
problems of distributed systems

WHAT’S THE POINT?

Monolithic is simpler, but you
still have opportunity to scale

out in future with microservices

WHAT’S THE POINT?

DEMO

TAKEAWAYS

1. Learn the basics of DDD, but you don’t have to be an expert
2. Learn about Event Storming, and consider adopting the practice in your

organization
3. Implement the 4 + 1 levels of modularity to easily switch from monolith to

microservice, and maybe even serverless functions!
4. Leverage an event/message bus to communicate between services by passing

events
a. Local bus for monolith (ie. Vert.x Event Bus)
b. Distributed bus for microservices/functions (i.e. Kafka)

TAKEAWAYS

5. Consider starting with a monolith first
and break it apart later, only when
necessary

