B

REIMAGINING MONOLITHS WITH DDD

Using domain-driven design to reimagine monolithic
applications in a world of microservices

Eric Murphy and AleS Nosek
Red Hat Consulting Architects
May 8, 2019

INTRODUCTIONS

RED HAT

Eric Murphy ©) APPDEV

CENTER OF EXCELLENCE

e Architect
e App Dev Center of Excellence

Fun Fact: Co-authored Creating
Applications with Mozilla, O’Reilly, 2002

redhat

Ale§ Nosek Q CERTIFIED

* ARCHITECT

e Red Hat Certified Architect
e (Consulting, West Region

Fun Fact: Worked at SUSE on open source
projects, then worked on proprietary
products. Felt guilty, so came to work on
open source at Red Hat!

#redhat #rhsummit

TODAY’S DISCUSSION

e Not a full introduction to Domain Driven Design (DDD)
e Practical focus on DDD — Keep it simple, stupid (KISS principle)
e Technical, rather than high level
o Show me the code!
o Special focus on using Quarkus/Vert.x, but transferable to other
technologies
e Consider using DDD with monolithic architecture as the preferred choice
for brand new applications
o Take today’s advice back to your team

#redhat #rhsummit

2012:
DREAD FOR

SOA AND MONOLITHS

#redhat #rhsummit

2012:
HYPE FOR

MICROSERVICES!

#redhat #rhsummit

2018:
HYPE FOR

SERVERLESS (FUNCTIONS)!

#redhat #rhsummit

2012-2018:
DISDAIN FOR

MONOLITHS

#redhat #rhsummit

Today:
RETHINKING

MONOLITHS

7

Q

#redhat #rhsummit

WHY RETHINK MONOLITHS?

Not all apps should be

microservices or functions

#redhat #rhsummit

WHY RETHINK MONOLITHS?

Monoliths can easily be split
into microservices or functions

it designed correctly

#redhat #rhsummit

WHY RETHINK MONOLITHS?

Domain-Driven Design (DDD)
can quide you in building
monoliths that are decomposable

#redhat #rhsummit

WHY RETHINK MONOLITHS?

You don’t have to be “locked in”
to a monolithic architecture
when building a monolithic

application

#redhat #rhsummit

DOMAIN-DRIVEN DESIGN (DDD)

#redhat #rhsummit

DOMAIN-DRIVEN DESIGN (DDD)

e Merge your business domain with software modeling
e Special focus on:
o Capturing how users interact with the software (via event storming
activities)
o Identifying clusters of domain objects in the system (aggregates)
o Finding boundaries within business domain (bounded context)
e Check https://en.wikipedia.org/wiki/Domain-driven_design for a great
summary!
e Warning: DDD content is often very academic and dry, but invaluable to
modeling a domain and effectively designing modern software

#redhat #rhsummit

https://en.wikipedia.org/wiki/Domain-driven_design

RECOMMENDED READING

Domain-Driven Design Quickly
Summary of Eric Evan’s definitive book
Online version available for free (Google it)

A Summary of Eric Evans’ Dowrain-Driven Design

Domain-Driven
Design Quickly
BAEIR

by Abel Avram & Floyd Marinescu
HARR SR B

| nfOQ Enmterprise Software Development Series

#redhat #rhsummit

EVENT STORMING

e Facilitated group learning practice using Gamestorming and the principles
of domain-driven design (DDD)

e https://openpracticelibrary.com/practice/event-storming/

e Red Hat Open Innovation Labs leverages the Event Storming practice

#redhat #Hrhsummit

https://openpracticelibrary.com/practice/event-storming/

; ..\..'if’? 1

| B B RER]] ‘

#redhat #rhsummit

EVENT STORMING OUTPUTS

Events which help define the internal functionality of the software
Commands (Actions) initiated by a user or policy/procedure
Aggregates (Entities) which maintain application state

o Aggregate Root which is the top level of an Aggregate hierarchy

m May identify transactional boundaries within the software
e May identify separate services or microservices

Bounded Context which identifies boundaries between business domains

o May identify separate applications or services
Read Models which allow data to be efficiently retrieved
Screen Layouts which visually represent data to a user (optional)

#redhat #rhsummit

EVENT STORMING OUTPUTS (SIMPLIFIED)

Events

Commands (Actions)
Aggregates (Entities)
Bounded Context (Services)
Read Models (Data Views)
Screen Layouts

#redhat #rhsummit

EVENT STORMING (TO CODE)

Events » PhotoCreated

Commands (Actions) » createPhoto ()

Aggregates (Entities) » Photo

Bounded Context (Services) » PhotoService

Read Models (Data Views) » PhotoWithLikes
o Combines data from two bounded contexts, photos, and likes
o We will see the details in our example application

e Screen Layouts » Add Photo page

#redhat #rhsummit

BUILDING A (MODULAR) MONOLITH
WITH AN EYE TOWARDS
MICROSERVICES

#redhat #rhsummit

4 LEVELS OF MONOLITHIC MODULARITY

1. Source Control Modularity

o Utilize multiple Git repositories for 1 monolithic application

o Scale your application development across teams (programming in the large)
2. Build Modularity

o Utilize Maven Modules or Gradle Projects for building discrete application components
3. Code Modularity

o Utilize Java (9+) modules to provide granular (package level) contractual guarantees during

compile time
o Separate API code from Implementation code
o Emit and listen for events for cross-module communication
m Don’t call another module’s code directly

4. Data Modularity

o Do not create tight coupling of data between modules

#redhat #rhsummit

5 LEVELS OF MICROSERVICE MODULARITY

v Source Control Modularity
v Build Modularity
v Code Modularity
v Data Modularity
New:

5. Deployment Modularity Warning: Distributed System!
o Deploying multiple microservices/functions instead of one application
o May involve partitioning data into separate deployed databases
o Inter-service rather than intra-service communication
m Propagate events between services using a network transport
o User interface or clients must use multiple services
(potentially through an API aggregator)

#redhat #rhsummit

DDD SUPPORTS DEPLOYMENT MODULARITY

e Partitioned microservices/functions
o Commands (Actions) - separate API per microservice
Bounded Context (Services)
e Partitioned microservice/function data stores
o Aggregates (Entities)
o Read Models (Data Views)
m Screen Layouts
® Inter-service communication (event-based)
o Events - propagated through a distributed bus between
services in an asynchronous manner

#redhat #rhsummit

WHAT’S THE POINT?

By leveraging DDD and
modularity, you can build an
application that may be either a
monolith or microservices

#redhat #rhsummit

PHOTO GALLERY SAMPLE
APPLICATION

#redhat #rhsummit

PHOTO GALLERY SAMPLE APPLICATION

o Photos Service
o Likes Service
o Query Service

#redhat #rhsummit

PHOTO GALLERY SAMPLE APPLICATION

e Photo Gallery Monolith
o Photos Service

o Likes Service Opt/‘OW ‘#,

o Query Service

#redhat #rhsummit

PHOTO GALLERY SAMPLE APPLICATION

o Photos Microservice

o Likes Microservice Optl‘on #2

o Query Microservice

#redhat #rhsummit

WHAT’S THE POINT?

Same code, same modular
design, different deployment
options

#redhat #rhsummit

WHAT’S THE POINT?

Monolithic deployments avoid
problems of distributed systems

#redhat #rhsummit

WHAT’S THE POINT?

Monolithic is simpler, but you
still have opportunity to scale
out in future with microservices

#redhat #rhsummit

DEMO

#redhat #rhsummit

TAKEAWAYS

Learn the basics of DDD, but you don’t have to be an expert

Learn about Event Storming, and consider adopting the practice in your
organization

Implement the 4 + 1 levels of modularity to easily switch from monolith to
microservice, and maybe even serverless functions!

Leverage an event/message bus to communicate between services by passing
events

a. Local bus for monolith (ie. Vert.x Event Bus)

b. Distributed bus for microservices/functions (i.e. Kafka)

#redhat #rhsummit

TAKEAWAYS

5. Consider starting with a monolith first
and break it apart later, only when
necessary

#redhat #rhsummit

m linkedin.com/company/Red-Hat n facebook.com/RedHatinc

youtube.com/user/RedHatVideos u twitter.com/RedHat

