Practical, Secure Computing through Fully Homomorphic Encryption

Kurt Rohloff
krohloff@duality.cloud

Redhat 2019
“Your previous provider refused to share your electronic medical records, but not to worry
—I was able to obtain all of your information online.”
Encryption?

A method to “hide” information.

Use cases:

- Hide information so it can be used later only by you.
 - Ex: protecting your legal files.

- Hide information except for an intended recipient.
 - Ex: send financial transaction requests to ONLY your broker.

Symmetric Encryption

Public-Key Encryption

Homomorphic Encryption

- Hide information so you can out-source processing.
 - Cloud computing with encrypted data!!
 - Ex: spam filtering e-mail without reading e-mail.
Fully Homomorphic Encryption

FHE Client

Data Source

Ppk
Public Encryption Key

Encrypted Data

Computation Host

Encrypted Result

Decrypted Result

Sk
Secret Decryption Key
Out-Sourced Computation??

- Until very recently, once data is encrypted, there was basically no way to manipulate it.
 - Minor exceptions, of course.

- Fully Homomorphic Encryption (FHE)
 - Give data to cloud provider you don’t need to trust.
 - Provider can perform arbitrary computations for you.

- Examples:
 - Send video to a contractor for facial recognition analysis, but don’t need contractor to “see” the video.
 - Securely store and query a large, sensitive DB “in the cloud.”
 - Outsourced spam filtering of encrypted e-mail.
FHE Is Now Possible

• Discovery of a possible scheme in 2009
 – Craig Gentry from Stanford/IBM
 – Most important CS breakthrough of 21st century.
 – Very different computation model.

• There have been additional theoretical improvements since then.

• Practical computation challenges…
 – Slow-down
 – Ciphertext expansion
 – Different compute model
Lattice-based encryption

- FHE schemes are lattice-based encryption schemes.

- Lattice schemes form a “new” family of encryption.
 - Built on lattice mathematics.
 - Lattices are integer vectors.
 - They are resistant to quantum computing attacks.
Lattice Encryption Intuition?

- Encryption, Decryption, etc… are primarily composed of linear transforms over large integer vectors.

- Plaintext are integer vectors, modulus small p.
- Ciphertext are integer vectors modulus very large q.
Security?

• Key length is a heuristic for security provided.
 – It is effective for RSA, AES, etc…

• “Real” security is “work factor”
 – Amount of computational effort required to “crack” a key, ciphertext, etc…
Post-Quantum

• Quantum attacks:
 – Shor showed quantum algorithms for factoring.
 – Grover showed a quadratic speedup relative to search algorithms.

• Modern lattice encryption security proofs built on hardness of Shortest Vector Problem (SVP).
 – Best known quantum result is that we can provably find a shortest vector in time $2^{(C*n+o(n))}$.
 – Resistance to quantum attacks is still a conjecture.
 • Similar to conjecture that factoring is hard for classical computers.
Computing on Encrypted Data

Messages
- Lists of real numbers
- E-mails in ASCII text
- JPEG images

Plaintext
- Strings of mod \(p \) integer vectors
 - Examples:
 - \([1 0 0 0]\)
 - \([1 3 5 43 23]\)

Ciphertext
- Strings of mod \(q \) integer vectors
 - Examples:
 - \([311 231 3256 7697]\)
 - \([1673 3213 67354 323]\)

- **Message-Plaintext encodings** determined by translation of program into EvalAdd, EvalMult operations.
- **Coding** is an open research topic and drastically impacts effective runtime.

- **Plaintext-Ciphertext encryption/decryption** defined by FHE scheme.

- **Operations on ciphertexts**
Secure Programs with FHE

• Very different computation model.
• Base operations on ciphertext:

- Integer Addition mod p
- Integer Convolution mod p
- EvalAdd
- EvalMult

• Much of our innovations come from developing novel algorithms and data structures that are efficient for homomorphic computing model

• Conditional “if” statements on encrypted data not permitted.
Looking Forward

- **Software**
 - Smaller, Faster, Better!

- **Hardware**
 - Fit everything on board.

- **Applications/Demos**
 - Secure string searching (aka simple spam filtering) over encrypted ciphertext.

- **Transition & Broader Adoption**
“Your previous provider refused to share your electronic medical records, but not to worry
—I was able to obtain all of your information online.”
Questions?

Kurt Rohloff
krohloff@duality.cloud