

Practical, Secure Computing through Fully Homomorphic Encryption

Kurt Rohloff
krohloff@duality.cloud

Redhat 2019

A Fear and a Vision

*"Your previous provider refused to share your electronic medical records, but not to worry
—I was able to obtain all of your information online."*

Encryption?

A method to “hide” information.

Use cases:

Symmetric Encryption – Hide information so it can be used later only by you.

- Ex: protecting your legal files.

Public-Key Encryption – Hide information except for an intended recipient.

- Ex: send financial transaction requests to ONLY your broker.

Homomorphic Encryption – Hide information so you can out-source processing.

- Cloud computing with encrypted data!!
- Ex: spam filtering e-mail without reading e-mail.

Fully Homomorphic Encryption

Out-Sourced Computation??

- Until very recently, once data is encrypted, there was basically no way to manipulate it.
 - Minor exceptions, of course.
- **Fully Homomorphic Encryption (FHE)**
 - Give data to cloud provider you don't need to trust.
 - Provider can perform arbitrary computations for you.
- **Examples:**
 - Send video to a contractor for facial recognition analysis, but don't need contractor to "see" the video.
 - Securely store and query a large, sensitive DB "in the cloud."
 - Outsourced spam filtering of encrypted e-mail.

FHE Is Now Possible

- Discovery of a possible scheme in 2009
 - Craig Gentry from Stanford/IBM
 - Most important CS breakthrough of 21st century.
 - Very different computation model.
- There have been additional theoretical improvements since then.
- Practical computation challenges...
 - Slow-down
 - Ciphertext expansion
 - Different compute model

Lattice-based encryption

- FHE schemes are lattice-based encryption schemes.
- Lattice schemes form a “new” family of encryption.
 - Built on lattice mathematics.
 - Lattices are integer vectors.
 - They are resistant to quantum computing attacks.

Lattice Encryption Intuition?

- Encryption, Decryption, etc... are primarily composed of linear transforms over large integer vectors.

Plaintext space

Linear transforms
and add noise

Ciphertext space

- Plaintext are integer vectors, modulus small p .
- Ciphertext are integer vectors modulus very large q .

Security?

- Key length is a heuristic for security provided.
 - It is effective for RSA, AES, etc...
- “Real” security is “work factor”
 - Amount of computational effort required to “crack” a key, ciphertext, etc...

Post-Quantum

- Quantum attacks:
 - Shor showed quantum algorithms for factoring.
 - Grover showed a quadratic speedup relative to search algorithms.
- Modern lattice encryption security proofs built on hardness of Shortest Vector Problem (SVP).
 - Best known quantum result is that we can provably find a shortest vector in time $2^{(C^*n+o(n))}$.
 - Resistance to quantum attacks is still a conjecture.
 - Similar to conjecture that factoring is hard for classical computers.

Computing on Encrypted Data

- Message-Plaintext encodings determined by translation of program into EvalAdd, EvalMult operations.
- Coding is an open research topic and drastically impacts effective runtime.

- Plaintext-Ciphertext encryption/decryption defined by FHE scheme.

- Operations on ciphertexts

Secure Programs with FHE

- Very different computation model.
- Base operations on ciphertext:

- Much of our innovations come from developing novel algorithms and data structures that are efficient for homomorphic computing model
- Conditional “if” statements on encrypted data not permitted.

Looking Forward

- Software
 - Smaller, Faster, Better!
- Hardware
 - Fit everything on board.
- Applications/Demos
 - Secure string searching (aka simple spam filtering) over encrypted ciphertext.
- Transition & Broader Adoption

A Fear and a Vision

*“Your previous provider refused to share your electronic medical records, but not to worry
—I was able to obtain all of your information online.”*

Questions?

Kurt Rohloff

krohloff@duality.cloud