Multi-Party Computation in Health Care

Parul Singh, Red Hat
Mayank Varia, Boston University
Secure Medical Image Processing

- At Red Hat we are involved in several research projects at universities and industries
 - Boston University & Boston Children’s Hospital
- **ChRIS Research Integration System (ChRIS)**
 - Web-based medical image processing platform with quicker feedback
 - Democratize Medical Image Processing application development
Medical Image Processing in ChRIS - Input
Medical Image Processing in ChRIS - Output
Conclave Cloud Dataverse (C2D)

SAIL
Software & Application
Innovation Lab

BU
Red Hat
MOC
Typical Workflow: Centralize Data Storage & Analysis

- Typically, transfer data to a common location
- All data contributors must trust the organization that performs the analysis
- Data may be vulnerable in transit, when stored, and during analysis
C2D Workflow: Compute Without Sharing Data

Company A

Company B

Data

Data

Secure and private computation

Results
C2D Workflow: Federate Data Storage and Analysis

- Data never leaves any organization in the clear
- MPC protects data in use during the analysis
- Inputs stay private as long as at least one computing entity can be trusted to behave as specified
• New analyses can be privacy-preserving because data not shared prematurely

• Without MPC, would need data transfer, so protections applied “too early” in pipeline
Selected MPC deployments

Cybernetica: VAT tax audits

BU: Pay equity in Boston

Partisia: Rate credit of farmers

Google: Federated machine learning

Employers agree to ... contribute data to a report compiled by a third party on the Compact’s success to date. Employer-level data would not be identified in the report.
MPC at the scale of a city

COMPENSATION:
The BLS samples approximately 120,000 workers each year to calculate average annual compensation. The average annual compensation of all workers was $59,062 in 2019. This includes wages, salaries, and other forms of compensation. The BLS also calculates the average annual compensation for workers in different industries and occupations.

Average Annual Compensation by Gender
- **Women:** $57,327
- **Men:** $61,880

Average annual compensation by occupation:
- **Women:** $46,890
- **Men:** $54,240

TOTAL COMPENSATION (INCLUDING CASH BONUS OR PERFORMANCE PAY)
The sample included data on performance pay or bonuses paid to employees. The average total compensation was $78,766 for men and $60,583 for women.

ANNUAL COMPENSATION
- **Men:** $75,786
- **Women:** $50,583

The similar usage gap also varied by job category. Among workers in the largest occupation categories, the difference in average annual earnings was $1,080 between women and men. This gap is larger for workers in the largest occupations, such as professionals and managers, who earn more than $100,000 on average.

Earnings ratios by race, compared to white men:
- **Women:** 0.75
- **Men:** 1.00

Consistent with other surveys, the gender wage gap varied by race. While white women earned 75% of the median wage of white men, black women earned 61%, and Hispanic women earned 57%.

The largest occupations were among Black/Alaskan Native women, earning 82% of the median wage of white men, and Asian women, earning 80% of the median wage of white men.

Average annual earnings by occupation:
- **Women:** $50,583
- **Men:** $75,786

The largest occupations were among Black/Alaskan Native men, earning 108% of the median annual earnings of white men, and Asian men, earning 106% of the median annual earnings of white men.

Average annual earnings by industry:
- **Women:** $50,583
- **Men:** $75,786

The largest occupations were among Black/Alaskan Native men, earning 108% of the median annual earnings of white men, and Asian men, earning 106% of the median annual earnings of white men.

Average annual earnings by education level:
- **Women:** $50,583
- **Men:** $75,786

The largest occupations were among Black/Alaskan Native men, earning 108% of the median annual earnings of white men, and Asian men, earning 106% of the median annual earnings of white men.
MPC gets...

Security from isolation

Performance from co-location

Scalability from ???
Conclave: Automating Secure Computation

SQL-like programming language
⇒ *No MPC experience necessary*

Dispatcher executes jobs on available backends
⇒ *No new infrastructure*

Compiler discerns boundaries of secure computing
⇒ *No need for privacy experts*

Software available at github.com/multiparty/conclave
Conclave’s Query Specification

state where the data lives
data = cc.defineTable(schema, at=[org-1, org-2, org-3])

compute over the data as if it resided in one place
rev = data.project(["companyID", "price"])
 .sum("local_rev", group=["companyID"], over="price")
 .project([0, "local_rev"])
market_size = rev.sum("total_rev", over="local_rev")
share = rev.join(market_size, left=["companyID"],
 right=["companyID"])
 .divide("m_share", "local_rev", by="total_rev")
hhi = share.multiply(share, "ms_squared", "m_share")
 .sum("hhi", on="ms_squared")
 .divide("hhi", by=10k)
Conclave’s Static Analysis: Calculate Relations in the Clear

state where the data lives
data = cc.defineTable(schema, at=[partyA, partyB, partyC])

compute over the data as if it resided in one place
rev = data.project(["companyID", "price"])
 .sum("local_rev", group=[“companyID"], over="price")
 .project([0, "local_rev"])
market_size = rev.sum("total_rev", over="local_rev")
share = rev.join(market_size, left=[“companyID"],
 right=[“companyID"])
 .divide(“m_share", "local_rev", by="total_rev")
hhi = share.multiply(share, "ms_squared", "m_share")
 .sum(“hhi", on="ms_squared")
 .divide("hhi", by=10k)
Integrating Conclave into the cloud

- Conclave runs in containers within each silo
- OpenShift/Kubernetes orchestrate the execution of Conclave jobs
- MPC jobs begin when data analysts make queries over aggregate data
- Benefit: improved performance of secure computing via co-location
How we arrived here

- Both projects have common technology stack
- OpenShift
 - Isolation Techniques
 - Scaled job framework
 - Resource Management
 - CPU/Memory/Network/GPU
How MPC fit in Health Care?

- When data is scarce
 - Boston Trauma Center
 - Understanding rare diseases
- Sharing patient data in the clear is restricted
 - Privacy laws
 - Hospital standard practices
Sharing Information w/o Sharing Data

- Augment ChRIS with cryptographically secure Multi Party Computation
- OpenShift enabled isolated computing environment
Isolated Computing Environment

- **What?**
 - Run individual computations on pre configured secure nodes
 - Container segregation on a host level
Isolated Computing Environment in Cloud

- **How?**
 - Machine like virtualisation
 - Namespace
 - SeLinux
 - Project Isolation
 - Network Isolation
MPC Application in Health Care - Example

- Analyse brain segment volume
- Extrapolates the patient's brain volume against the population mean
- Identify segments that have significant deviation from the population mean in terms of brain volume for the same age group
Medical Image Processor

- MPC (C2D)
 - Calculate population mean
 - Calculate population standard deviation

- Non MPC (ChRIS)
 - Project patient’s brain volume against the population mean
 - Number of standard deviations from the mean the patient datapoint is
MPC job in C2D

- Calculate population mean
- Calculate population standard deviation

Base64 encoded linear algebra query

```
protocol: {
  data: "eW1wb3J6IGVmbWxvXZU\nMnxhbmccgYXMgYzMKZnJvSB\nb25jbGF\n\nconfig: {
  ID: "brain-volume-density",
  backend: "swift"
}

swift: {
  endpoints:
  "partyId": "BCH",
  "containerName": "bch-swift-bucket",
  "fileName": "in1",
  "files": []
}

"partyId": "MGH",
  "containerName": "mgh-swift-bucket",
  "fileName": "in2",
  "files": []
```
MPC job in C2D

OpenShift enabled isolated computing environment.
Non MPC job in ChRIS

- Extrapolates the patient’s brain volume against the population mean of different age group
Non MPC job in ChRIS

- Number of standard deviations from the mean a datapoint is

\[z = \frac{x - \mu}{\sigma} \]

- \(\mu \): Population Mean
- \(\sigma \): Standard Deviation
- \(x \): Data value/ Score
The Integration of ChRIS & C2D
The road ahead

- Collaboration when data is scarce
- MPC can make a huge impact in the medical landscape
- OpenShift provides the necessary features to build secure ecosystem for this collaboration
- MPC + OpenShift together can scale to big data
Questions?