
Data streaming with Apache Kafka 
using AMQ streams
Tom Bentley
Principal Software Engineer

Jakub Scholz
Principal Software Engineer

May 9th, 2019



Introductions



Red Hat AMQ
AMQ Online

- Scalable, easy-to-manage messaging based on OpenShift container 

platform

- Developer self-service model; Metering, etc.

AMQ Broker

- Store and forward

- Volatile and durable

- JMS 2.0

- Standardized AMQP 

1.0 and MQTT

AMQ Interconnect

- High performance 

direct messaging

- Distributed messaging 

backbone

AMQ Streams

- Streaming platform

- Durable pub/sub

- Replayable streams

- Based on Apache 

Kafka 

C
om

m
on M

anagem
ent



Apache Kafka
● Streaming data platform

● Pub/sub messaging

● Main features

○ Horizontally scalable

○ Fault tolerant

○ Immutable commit log

● With an ecosystem of software around it, including:

○ numerous language bindings for producers and consumers

○ Connectors for getting information to/from other systems

○ An API (Kafka Streams) for writing real-time event-based applications



AMQ Streams

● Apache Kafka packaged and supported by Red Hat

○ Broker, Java clients, Kafka Connect, Kafka Streams

● Available to run on two platforms:

○ On RHEL, for bare metal or virtualized deployment

○ On OCP, for on-premise or public cloud deployment

● AMQ Streams on OCP is based on Strimzi project

● All components are open source



AMQ Streams on OpenShift



An Operator for Kafka Clusters

Benefits of operator approach for Kafka:
● Elastic Kafka clusters (leverage OpenShift’s 

elasticity)
● Lowers barriers for using complex technologies such 

as Kafka
● No need for complicated, error-prone manual 

configuration of TLS, authentication, authorization, 
etc.

● Benefits of declarative configuration for full-lifecycle
● OpenShift-centric: DevOps can deploy whole 

application as native OpenShift resources

The Kafka custom resource describes the desired Kafka 
(and Zookeeper) cluster(s)



Topic & User
operators

Zookeeper
cluster

Kafka
cluster

Cluster 
operator

Kafka
Custom 

Resource

Example: Creating a cluster



Topic & User
operators

Zookeeper
cluster

Kafka
cluster

Cluster 
operator

Kafka
Custom 

Resource

Example: Updating a cluster



Demonstration: 
Spinning up a Kafka Cluster



Enterprise Kafka applications in 
OpenShift

● Having a Kafka cluster is great but... pointless 

without applications

● DevOps need to create topics, authenticate and 

authorize access to Kafka resources, etc.

● DevOps should be OpenShift-native

● AMQ Streams uses custom resources & operators 

for Topics, Authnz, Kafka Connect, Mirror Maker

● These can then be deployed at the same time as 

the rest of the application



Demonstration: 
Creating topics and users



Kafka Connect

● Kafka Connect is a framework for 

connecting Kafka to external systems

● Connectors run inside Kafka Connect (i.e. 

are plugins)

● Common Kafka producer/consumer 

machinery

Source
Connector

C
on

ne
ct

 A
PI

C
on

ne
ct

 A
PI

Sink
Connector

● Easy to write

● Connector developers focus on getting data 

into, or out of, their particular system

● Large ecosystem of connectors

● Example: Debezium

External 
System

External 
System



Demonstration: 
An example connector
Fetching stock prices



Kafka Streams
● Message often encapsulating events
● The events have business value
● Real-time, stream
● “Streaming Applications”

Application

Aggregate

positions
Portfolio 
values

Join

● In terms of functional operations (map, filter, 
join, etc.)

● E.g. Sum a stream of stock trades to a 
stream of aggregated positions

● E.g. Join positions with a stream of stock 
prices to get portfolio value

prices
trades



Demonstration: 
Example Kafka Streams application
Real time Stock portfolio valuation



Monitoring Kafka
● AMQ Streams on OCP integrates with 

Prometheus for monitoring

● Alerting is also supported via Prometheus

● Grafana dashboard are provided OOTB

● Separate Prometheus and Grafana 

instances are used (not the ones used for 

OCP itself)



Demonstration: 
Monitoring



What we’ve seen
● Apache Kafka is great

● AMQ Streams offers a Red Hat supported distribution of Apache Kafka:

○ On RHEL

○ On OCP

● Operators are a great way to give users an OpenShift-native experience

● The AMQ Streams operators make it super-easy to deploy Kafka on OCP

● Operators for topics, users etc extend the OpenShift-native experience even further

● Example Connector and Kafka Streams application

● Monitoring



Scale 
Down

Affinity
Tolerations

Encryption

Authorization

Scale Up

Logging

Metrics

Healthchecks

Zookeeper

Off-cluster access

Configuration

Source2Image
Topic

JVM 
Configuration

Authentication

Storage

HA

Mirroring

Kafka 
Connect

CPU and 
RAMUsers

Pod Disruption 
Budgets

Annotations

ImagePullSecrets

Labels

Upgrades

Secrets

ACLs Network 
Policies

Prometheus

Grafana

TLS by 
default

Features you’ve not seen

SASL SCRAM 
SHA



Roadmap



Roadmap
Currently planned for AMQ Stream 1.2:

● Support for Kafka 2.2.x

● HTTP Proxy

● Improvements in Storage reconfiguration: 

○ Adding disks

○ Changing disk sizes

In future versions of AMQ Streams:

● External authentication (RH SSO)

● Schema Registry

● Cluster balancing

● Kafka Connect connectors (Debezium, 

AMQP)

● Console (GUI)

● SQL Stream processing

● Kafka ⇄ AMQP 




