
DEVELOPING WITH C++, FORTRAN, GO,
AND RUST ON RED HAT ENTERPRISE LINUX 8

Matt Newsome, PhD
Senior Engineering Manager, Platform Tools Team
May 2019

http://bit.ly/rhel8tools

http://bit.ly/rhel8tools

WHAT DEVELOPER TOOLS DOES
RED HAT ENTERPRISE LINUX 8 CONTAIN?

http://bit.ly/rhel8tools

WHAT’S IN RED HAT ENTERPRISE LINUX 8?

Rust

C++

Golang

Performance analysis tools

Ancillary tools

● GCC 8 [gcc, binutils, gdb, gfortran for Fortran developers, etc.]
● LLVM 7 [clang, lldb, lld]
● GCC 9 and later available in future releases

● Rust-toolset [rustc, cargo, clippy, rustfmt, rls]

● Go-toolset [golang]

● Make, cmake, flex, bison, byacc, ltrace, dwz, etc.

● Valgrind, Performance Co-Pilot, SystemTap, dyninst, elfutils, etc.

http://bit.ly/rhel8tools

HOW OFTEN WILL DEVELOPER
TOOLS BE UPDATED IN

RED HAT ENTERPRISE LINUX 8?

http://bit.ly/rhel8tools

● GCC 8 in Red Hat® Enterprise Linux® 8 as the system compiler
● Glibc-2.28, binutils-2.30
● Updates in minor Red Hat Enterprise Linux 8 releases [~6 months]
● LLVM/Clang will update to a newer upstream version [~6 months]
● Newer versions of GCC will be made available, similar to the process

for Red Hat Developer Toolset

HOW OFTEN DO THE COMPONENTS UPDATE?

Rust

Golang

Performance analysis tools

Ancillary tools

C++

● Updated to newer upstream version ~3 months

● Updated to newer upstream version ~6 months

● Updated ~6 months, sometimes to new upstream versions

● Updated ~6 months, sometimes to new upstream versions

http://bit.ly/rhel8tools

GETTING STARTED WITH
DEVELOPER TOOLS IN

RED HAT ENTERPRISE LINUX 8

http://bit.ly/rhel8tools

Where are they?

Toolchains: Red Hat Enterprise Linux 8 application stream

Libraries and binutils: BaseOS

$ sudo yum -y group install
"Development Tools"
(or individually, e.g.)
$ sudo yum install gcc-c++)

$ sudo yum install gfortran

$ sudo yum -y install llvm-toolset
$ sudo yum -y install rust-toolset
$ sudo yum -y install go-toolset

LLVM, Rust, and Go

Fortran

C++

HOW TO INSTALL THEM

GETTING STARTED
 Installation in Red Hat Enterprise Linux 8

How are they packaged?

GCC/gfortran tools: Regular RPMs

Libraries and binutils: BaseOS

http://bit.ly/rhel8tools

Performance analysis tools

$ sudo yum -y install valgrind
$ sudo yum -y install pcp-zeroconf
$ sudo systemctl start pmcd
$ sudo yum -y install systemtap
$ sudo stap-prep
$ sudo yum -y install valgrind

$ sudo yum -y install cmake

Ancillary tools

GETTING STARTED
 Installation on Red Hat Enterprise Linux 8

http://bit.ly/rhel8tools

$ gfortran -v
$ gfortran foo.f90

$ gcc -v
$ gcc foo.c
$ g++ foo.cpp
$ clang -v
$ clang foo.c
$ clang++ foo.cpp
$ gdb a.out

FortranC++

GETTING STARTED
Usage in Red Hat Enterprise Linux 8

HOW DO YOU USE THEM?

http://bit.ly/rhel8tools

$ go version
$ go run foo.go

$ rustc --version
$ rustc foo.rs
$ cargo new hello && cd hello
 && cargo run

GoRust

GETTING STARTED
Usage in Red Hat Enterprise Linux 8

HOW DO YOU USE THEM?

http://bit.ly/rhel8tools

$ valgrind /bin/ls
$ pcp dstat
$ stap -L 'process.function
("*")' -c /bin/ls

$ cmake -version
$ cmake .

Performance analysis toolsAncillary tools

GETTING STARTED
Usage in Red Hat Enterprise Linux 8

HOW DO YOU USE THEM?

http://bit.ly/rhel8tools

MIGRATING C++, RUST, GO,
AND FORTRAN PROJECTS TO

RED HAT ENTERPRISE LINUX 8

http://bit.ly/rhel8tools

MIGRATING FROM RED HAT ENTERPRISE 7

GCC

● Red Hat Enterprise Linux 7 defaulted to
C++98 while Red Hat Enterprise Linux 8
defaults to C++14

● Ada, Objective-C/Objective-C++,
and GCJ no longer supported in Red Hat
Enterprise Linux

Developer toolset

LLVM

● Red Hat Enterprise Linux 7 has SCLs:

● Red Hat Enterprise Linux 8 has a module:

yum install llvm-toolset

llvm-toolset-7, llvm-toolset-6.0, …

http://bit.ly/rhel8tools

Golang

● Red Hat Enterprise Linux 7 has SCLs:

● Red Hat Enterprise Linux 8 has a module:

yum install go-toolset

go-toolset-7, go-toolset-1.8, …

MIGRATING FROM RED HAT ENTERPRISE 7
Developer toolset

Rust

● Red Hat Enterprise Linux 7 has SCLs:

● Red Hat Enterprise Linux 8 has a module:
 yum install rust-toolset

rust-toolset-7,rust-toolset-1.29,…

http://bit.ly/rhel8tools

HEADLINE FEATURES IN THE VERSIONS
WITHIN RED HAT ENTERPRISE LINUX 8

http://bit.ly/rhel8tools

HEADLINE FEATURES

● Improved vectorization and
optimization passes, especially
devirtualization

● New warnings

● DWARF5 debugging support

● Full support for C++11 and C++14,
and experimental support for C++17

GCC VERSION: 8

Red Hat Enterprise Linux 8

● In-development code for C++2a
(unsupported)

● C++14 is the default

● OpenMP 4.5 support

● Alongside GCC 8, Boost updated to 1.66

http://bit.ly/rhel8tools

~15% estimated performance
improvement over
Red Hat Enterprise Linux 7’s
equivalent GCC

SPEC CPU2017 PERFORMANCE (ESTIMATED)

Used optimization flags: -Ofast -flto -fno-fat-lto-objects -march=core-avx2 -mtune=core-avx2Source: Red Hat. Results are estimated based on measurements on a Red Hat internal non-production platform.

perlb
ench

gcc
mcf

omnetpp
x264

xa
lancbmk

deepsje
ng

Geomean (e
st)leela

exchange2 xz

GCC 4.8.2 GCC 8.2

GCC 4.8.2 vs. GCC 8.2 SPECspeed2017_int_base (estimated)
15

10

5

0

En
te

r u
ni

ts
 h

er
e

http://bit.ly/rhel8tools

Standards-compliant features

● Support for ISO C threads via
#include <thread.h>

● Unicode 11.0.0 support and localization
data via ISO 14651 update

● IEEE binary128 format support
(ISO/IEC TS 18661-3:2015)

● Improved malloc performance relative to
Red Hat Enterprise Linux 7 (thread-local
cache)

● GLIBC_TUNABLES environment variable for
runtime tuning

● Dynamic handling of /etc/resolv.conf
when networks change

● Improved security handling of abort()

VERSION: 2.28

HEADLINE FEATURES
Red Hat Enterprise Linux 8

glibc

http://bit.ly/rhel8tools

Improved C++ debugging and usability

● C++11 and above features: rvalue
references, alignof, etc.

● Breakpoints match in all scopes and
namespaces by default

● No need for quoting when setting C++
breakpoints

● Tab completion improvements (better
overall, more so with C++ breakpoints)

● GDBserver virtually at feature parity with
local/native debugging

● Rust language support

● DWARF5 support

● New Python scripting API extensions and
abilities

● New commands, options, and fine-tuning
of the CLI

GDB VERSION: 8.2

HEADLINE FEATURES
Red Hat Enterprise Linux 8

http://bit.ly/rhel8tools

Performance

● Function multiversioning (FMV) support

● Each using a different architecture’s
specialized instruction-set extensions

● Experimental support for DWARF5
debugging information

● Speculative load hardening

Clang/LLVM VERSION: 7.0.1

HEADLINE FEATURES
Red Hat Enterprise Linux 8

Sanitizers

● MemorySanitizer, AddressSanitizer, and
UndefinedBehaviorSanitizer

● Example: Implicit conversion sanitizer (part
of the UndefinedBehaviorSanitizer)

-fsanitize=implicit-conversion

● Note: sanitizers also available in GCC8

http://bit.ly/rhel8tools

Rust 2018 edition

● Opt-in; new keywords, module changes,
and non-lexical lifetimes

● Still supports 2015 edition code, fully
interoperable

VERSION: glibc 2.28Rust VERSION: 1.31

HEADLINE FEATURES
Red Hat Enterprise Linux 8

Newly stabilized tools

● Clippy: extra lints for correctness,
complexity, and style

● RLS: language server for IDE integration

● Rustfmt: automatic code formatter

And more

● const fn, lifetime elision, procedural macros, ...

http://bit.ly/rhel8tools

VERSION: 1.11.4

HEADLINE FEATURES
Red Hat Enterprise Linux 8

● FIPS certification planned for Red Hat
Enterprise Linux 8.1

● Implemented through dynamic loading of
OpenSSL by default

● Can be disabled during builds with
`-tags=no_openssl`

● Preliminary support for Go modules

Go
● Experimental support for the

WebAssembly target

● Improved debug information: better
DWARF information for optimized
binaries

http://bit.ly/rhel8tools

HEADLINE FEATURES

binutils 2.30, make 4.2.1, cmake 3.11.4, flex
2.6.1, bison 3.0.4, byacc-1.9.*,

ltrace 0.7.91, dwz 0.12, etc.
.

Red Hat Enterprise Linux 8

Binutils 2.30

● Adds new security features to the linker

● Adds support for improved debugging
with GDB

Ancillary tools
Make 4.2.1

● Improved target tracing with new -- trace
feature

● Improved error reporting (e.g., exact line
number of failure)

● Job server interface is now formalized and
documented

http://bit.ly/rhel8tools

Next generation dstat: pcp-dstat(1)

● Reports configurable columns of arbitrary
system statistics using config files

● Adds historical and remote host analysis

Performance Co-Pilot
pcp2spark(1)

● Sends PCP system metrics to the
Apache Spark platform for analytics

pcp2elasticsearch(1)

● Sends PCP metrics to Elasticsearch for
indexing and querying in the ELK stack

VERSION: 4.3

HEADLINE FEATURES
Red Hat Enterprise Linux 8

http://bit.ly/rhel8tools

New metrics

● Added podman container metrics into PCP

● Access PCP metrics from eBPF scripts

● Added v10 PostgreSQL server metrics into
PCP

Performance Co-Pilot
Vector web app adds heatmap and
bcc support

● New heatmap visualization added to
getvector.io

● New eBPF metric visualizations added

Disk space savings allowing finer-grained
metric recording

● Transparent, multivolume archive
compression

VERSION: 4.3

HEADLINE FEATURES
Red Hat Enterprise Linux 8

http://bit.ly/rhel8tools

VERSION: 4.0

HEADLINE FEATURES
Red Hat Enterprise Linux 8

● Prometheus exporter service, demos

● eBPF back-end support, including string
data types

● Scripts are now more future-proof when
working with syscalls

SystemTap
Other features since Red Hat
Enterprise Linux 7.2

● --monitor and --interactive modes

● Scripts can take console input

http://bit.ly/rhel8tools

● IBM s390x (“System Z”) vector support

● Improved suppression specifications

● Faster performance

Valgrind VERSION: 4.0

HEADLINE FEATURES

VERSION: 3.14

Red Hat Enterprise Linux 8

http://bit.ly/rhel8tools

What is CodeReady Linux Builder?

http://bit.ly/rhel8tools

VERSION: 4.0

For Developers: CodeReady Linux Builder

VERSION: 3.14

BaseOS - The Core Operating System

AppStream - Where Userspace Things Reside

Available with Developer Subs, NFRs, and all RHEL Production Subs.

The RHEL Userspace ABI

Full RHEL 10 year life
and guaranteed ABI

Standard 10 year or
specified life Apps

Builder - Additional libraries and tools for developers
Not supported for
production use. Similar to
“optional” channel

https://developers.redhat.com/blog/2018/11/15/introducing-codeready-linux-builder/

http://bit.ly/rhel8tools

Web Developer, PHP, Ruby, and Perl
● PHP packages, Ruby gems, and Perl modules are provided in AppStream
● Ruby and Perl both have additional libraries made available in the Builder repository
● However they are less commonly used or used at build time only

Java Developers
● The functionality and jars you would expect to use normally have been provided in the

AppStream
● Ant, maven and apache-commons-logging can be found in AppStream
● If you need some of the build-only components, those are in the Builder repository

VERSION: 4.0

CodeReady Linux Builder Use Cases
Red Hat Enterprise Linux 8

CODE READY LINUX BUILDER

http://bit.ly/rhel8tools

.NET Developers
● Core Runtime & tools are in AppStream as the “dotnet” package
● As a .Net developer, you will not need the Builder repository

Go and Rust Developers
● Go and Rust statically link their own runtimes
● If you use one of these languages, you won’t need the Builder repository

VERSION: 4.0

CodeReady Linux Builder Use Cases
Red Hat Enterprise Linux 8

CODE READY LINUX BUILDER

http://bit.ly/rhel8tools

C/C++ and Fortran
● Core libraries (e.g. glibc, libstdc++) are in BaseOS
● Compilers are provided directly in AppStream with tools to support development
● Many of the header files, devel packages, etc. are found in the Builder repository
● You’ll likely want to have Builder enabled on build machines
● You should not, normally, need the repository enabled on your runtime deployments

Packaging and Deployment Tools
● e.g. meson, dejagnu, and doxygen
● Also found in the Builder repository

VERSION: 4.0

CodeReady Linux Builder Use Cases
Red Hat Enterprise Linux 8

CODE READY LINUX BUILDER

http://bit.ly/rhel8tools

DEEPER DIVE

http://bit.ly/rhel8tools

● C++ Language Variants and ABI

● Performance builds, analysis and tuning

● Security features in RHEL 8 Tools

● Accelerating your own development

TOPICS VERSION: 4.0

DEEPER DIVE

RED HAT ENTERPRISE LINUX 8: TOOLS

http://bit.ly/rhel8tools

● RHEL7 Developer Toolset (DTS) supports C++11

● Language variant is distinct from ABI

○ GCC upstream std::list and std::string implementation didn’t satisfy algorithmic
complexity requirements introduced in C++11

○ RHEL7 and RHEL7-based DTS GCCs inherited that initial implementation from upstream

○ GCC ABI changed upstream in GCC5

○ RHEL7 Developer Toolsets introduced and continued support for C++11

○ But the standard RHEL C++ library didn’t change ABI

○ Compile time flag in DTS GCCs (-D_GLIBCXX_USE_CXX11_ABI=0 default)

C++11 and ABI in RHEL7 VERSION: 4.0

DEEPER DIVE

RED HAT ENTERPRISE LINUX 8: TOOLS

http://bit.ly/rhel8tools

RHEL8 C++11 language support

● Full support for C++11 and C++14

● Experimental C++17 support

● Preliminary support for a few C++2a
features

C++11 and ABI in RHEL8
RHEL8 C++11 ABI support

● Supports both the old and new ABI

○ Can be changed at compile-time

○ Set -D_GLIBCXX_USE_CXX11_ABI=0 or
-D_GLIBCXX_USE_CXX11_ABI=1

● GCC defaults to the new ABI

● True for later GCC releases for RHEL8 via
Developer Toolset-like releases

RED HAT ENTERPRISE LINUX 8: TOOLS

DEEPER DIVE

http://bit.ly/rhel8tools

● Binaries built with Developer Toolset on RHEL 7:

○ Will work on RHEL 8 if it only depends on libstdc++.so

○ May not work if they depend on other system libraries

○ Mixing interfaces using the old/new ABI will lead to problems and is explicitly not
supported [e.g. binary uses new ABI and library uses old ABI]

○ Specifically, interfaces between objects using std::list, std::string, etc.

○ Can cause silent issues as well as build-time or runtime linker errors

○ The two implementations can co-exist within one binary because the mangled names are
different

C++11 and ABI in RHEL8 VERSION: 4.0

DEEPER DIVE

RED HAT ENTERPRISE LINUX 8: TOOLS

http://bit.ly/rhel8tools

C++ ABI: Guidance VERSION: 4.0

DEEPER DIVE

RED HAT ENTERPRISE LINUX 8: TOOLS

● Upshot:

○ If you rebuild some of your project on RHEL8, you should rebuild all of it rather than try
to link with code compiled on RHEL7

○ As usual, forwards support only:

○ Build on RHEL8 and run on the same of later RHEL8, not RHEL7

○ More information:
https://developers.redhat.com/blog/2015/02/05/gcc5-and-the-c11-abi/

https://developers.redhat.com/blog/2015/02/05/gcc5-and-the-c11-abi/

http://bit.ly/rhel8tools

● -O2 or -O3 are generally good places to start

○ -flto is often beneficial, but can make debugging much more difficult

○ -march=native -mcpu=native

■ Can help too

■ But assumes the result always runs on the same hardware as its build

○ PGO almost always helps if you have good training data

● Domain specific extensions including OpenMP

Building for performance VERSION: 4.0

DEEPER DIVE

RED HAT ENTERPRISE LINUX 8: TOOLS

http://bit.ly/rhel8tools

● Generating execution profiles via compile-time instrumentation

○ Use -fprofile-generate to enable runtime gathering of profiling data

○ Use -fprofile-use to exploit the profiling data to improve optimization

● Using perftools like SystemTap to gather additional data

○ Useful reading:

■ https://access.redhat.com/articles/17839 (using systemtap kbase)

■ https://access.redhat.com/articles/767563 (performance cookbook)

■ https://sourceware.org/systemtap/examples/ (systemtap examples)

Performance Analysis VERSION: 4.0

DEEPER DIVE

RED HAT ENTERPRISE LINUX 8: TOOLS

https://access.redhat.com/articles/17839
https://access.redhat.com/articles/767563
https://sourceware.org/systemtap/examples/

http://bit.ly/rhel8tools

Performance Analysis VERSION: 4.0

DEEPER DIVE

RED HAT ENTERPRISE LINUX 8: TOOLS

● glibc tunable options

○ Customize behavioral aspects of the C library (glibc)

○ Documented in the "Tunables" chapter of the manual

○ $ info libc Tunables

○ Explained for each glibc subsystem

http://bit.ly/rhel8tools

Performance Analysis VERSION: 4.0

DEEPER DIVE

RED HAT ENTERPRISE LINUX 8: TOOLS

● glibc tunable options: Simple example

○ Disable thread-local cache and allow only 1 arena in malloc (old RHEL 6 behavior):

■ GLIBC_TUNABLES=glibc.malloc.tcache_count=0:glibc.malloc.arena.max=1

■ export GLIBC_TUNABLES

http://bit.ly/rhel8tools

Security Features in RHEL 8 Tools VERSION: 4.0

DEEPER DIVE

RED HAT ENTERPRISE LINUX 8: TOOLS

● RHEL 8’s own executables and libraries hardened against Stack Clash

● -fstack-clash-protection to harden your own code against Stack Clash

● Many new security focused warnings in GCC to detect buffer overflows, out of bounds array
indexing, unterminated character strings, etc

● Automatic annotation of system binaries and executables for later examination of their security
profile (annobin)

http://bit.ly/rhel8tools

Spectre/Meltdown: Security vs PerformanceVERSION: 4.0

DEEPER DIVE

RED HAT ENTERPRISE LINUX 8

● Retpolines

○ No need to do anything to mitigate Spectre style attacks for user space code

○ Retpolines are, in fact, harmful for user space code

● Kernel modules

○ Will automatically pick up appropriate mitigations if they use the kernel kbuild system

● Userspace builds

○ These should use stack-clash protection, PIE, stack protector, etc.

○ Performance impacts here are minimal

http://bit.ly/rhel8tools

glibc enhancements VERSION: 4.0

DEEPER DIVE

RED HAT ENTERPRISE LINUX 8: TOOLS

● Improved security in abort() processing

○ Terminate program as quickly as possible to avoid execution of malicious code

● LD_LIBRARY_PATH, and LD_POINTER_GUARD ignored for AT_SECURE

● Corrective handling of ELF dynamic string tokens in all forms of input in the binary

○ Particularly for AT_SECURE

● IDNA implementation uses system libidn2 to improve security

● DNS stub resolver limits advertised UDP buffer size to 1200 bytes

○ Avoids fragmentation-based spoofing attacks

● Removal of most alloca and VLAs from glibc

http://bit.ly/rhel8tools

GCC's diagnostic subsystem
● Now tracks source locations in terms of ranges of source, rather than points
● Makes it clearer exactly where problems are by underlining relevant subexpressions
● Can emit fix-it hints, suggesting to the user how to fix a problem
● Eclipse CDT is able to auto-apply such suggestions
● Red Hat developers contributed these improvements to the upstream GCC project

Numerous usability improvements to GCC vs RHEL7
● https://developers.redhat.com/blog/2018/03/15/gcc-8-usability-improvements/

VERSION: 4.0

Accelerate Your Own Development
Red Hat Enterprise Linux 8

https://developers.redhat.com/blog/2018/03/15/gcc-8-usability-improvements/

http://bit.ly/rhel8tools

VERSION: 4.0

Example: typo in field name
RHEL 8’s gcc 8 suggests corrections for misspelled field names

http://bit.ly/rhel8tools

VERSION: 4.0

Example: parameter type mismatch
RHEL 7’s gcc 4.8 is imprecise when reporting the location of the problem

http://bit.ly/rhel8tools

VERSION: 4.0

Example: parameter type mismatch
RHEL 8’s gcc 8 uses underlining to show exactly where the problem is

http://bit.ly/rhel8tools

VERSION: 4.0

Example: hints for accessing private fields
RHEL 8’s gcc 8 can suggest accessors (e.g. when refactoring C++ code)

http://bit.ly/rhel8tools

Further Reading: GDB VERSION: 4.0

DEEPER DIVE

RED HAT ENTERPRISE LINUX 8: TOOLS

● Write a custom GDB Python pretty-printer to simplify display of complex objects:

○ https://developers.redhat.com/blog/2017/11/10/gdb-python-api/

● Take advantage of GDB's newly enhanced C++ breakpoint scope/namespace wild matching:

○ https://sourceware.org/ml/gdb-patches/2017-06/msg00012.html

(gdb) b method[TAB]
 A::method()
 B::A::method()

(gdb) b method
 Breakpoint 1 at method. (2 locations)

● Debug your OpenShift container via GDBserver

○ https://developers.redhat.com/blog/2015/04/28/remote-debugging-with-gdb/#more-415434

 (gdb) target extended-remote | oc exec -i $POD -- gdbserver --multi -

https://developers.redhat.com/blog/2017/11/10/gdb-python-api/
https://sourceware.org/ml/gdb-patches/2017-06/msg00012.html
https://developers.redhat.com/blog/2015/04/28/remote-debugging-with-gdb/#more-415434
https://sourceware.org/gdb/current/onlinedocs/gdb/Remote-Debugging.html

http://bit.ly/rhel8tools

SLIDES LINK REMINDER:
bit.ly/rhel8tools

http://bit.ly/rhel8tools

Q&A

