With an aim to separate hype from reality in Day 4 at Sibos, I was on a mission to understand what the existing and near-term applications of Artificial Intelligence (AI) were in banking. With machine learning described as “table stakes” now, Richard Harris (Feedzai) during The Ethical Side of AI panel, suggested that the closest we have to understanding the impact AI will have is by looking at the internet – knowing the internet would change everything but twenty years ago, we didn’t know how – describes the state of AI today.
Risk mitigation appears to be an active area for current AI application. For example, with a worldwide impact of money laundering estimates between 2% to 5% of global GDP (upwards of $2 trillion USD), Heike Riel, IBM (Sensemaker: The interconnectedness of everything and advanced AI) cited a case where they found a reduction in false positives of 95% to 50%, along with a reduction of 27% in manual effort by using AI/ML to help discover the undefined unknowns in the data. Using AI to help triage fraud for human interpretation and action is considered ‘narrow’ AI – the application of AI to one particular task.
Broadening the scope of AI beyond a single task may be on the horizon. In the future I can see a time when an AI would become a new hire to the bank, employed to derive new, company-wide insights to improve processes, identify efficiencies or ways to improve customer experience.
As Ayesha Khanna (ADDO AI) mentioned in her breakfast keynote, we will need to be able to accept the insights from AI for this to be successful, and not dismiss them simply because we never thought of them before.
For now AI use is openly described for risk mitigation and advisory applications with a general expectation that this is only the beginning. And although AI begins with a use case – with a defined goal and data to learn from – ultimately the application of AI needs to create value. Currently value is focused on generating efficiencies, improving operations and cutting costs. But in the broader applications of ‘true AI’ we will likely need to reconsider how to measure value.
As Genevieve Bell put it during the closing plenary we will need question the metrics upon which we assess value, especially when considering autonomous applications of AI. Harkening back on previous industrial revolutions that created entirely new disciplines (like computer science during the 3rd industrial revolution) to this 4th industrial revolution powered data, AI, sensors and other advances she pointed out the likelihood of entirely new disciplines to form.
Perhaps by then we’ll also have new metrics to ascribe value of AI – like measuring the transparency, or trustworthiness of AI. The human doesn’t leave the equation in AI, for labeling data for example, but we may need to redefine how we treat it – possibly more, as Bell termed it during her session, a colleague than an algorithm. To learn more about some of the people we are working with in AI, and their stories, don’t miss “The People behind OpenAI” from our Open Source Stories series.
Sull'autore
Described as a pioneer and one of the most influential people by CRMPower, Fiona McNeill has worked alongside some of the largest global organizations, helping them derive tangible benefit from the strategic application of technology to real-world business scenarios.
During her 25 year professional tenure, she has led teams, product strategy, marketing, and consulted across a wide range of industries, while at SAS, IBM Global Services, and others. McNeill co-authored Heuristics in Analytics with Dr. Carlos Andre Pinheiro, has previously published both in academic and business journals, and has served on the board of the Cognitive Computing Consortium. She received her M.A. in Quantitative Behavioral Geography from McMaster University and graduated with a B.Sc. in Bio-Physical Systems, University of Toronto.
Altri risultati simili a questo
Ricerca per canale
Automazione
Novità sull'automazione IT di tecnologie, team e ambienti
Intelligenza artificiale
Aggiornamenti sulle piattaforme che consentono alle aziende di eseguire carichi di lavoro IA ovunque
Hybrid cloud open source
Scopri come affrontare il futuro in modo più agile grazie al cloud ibrido
Sicurezza
Le ultime novità sulle nostre soluzioni per ridurre i rischi nelle tecnologie e negli ambienti
Edge computing
Aggiornamenti sulle piattaforme che semplificano l'operatività edge
Infrastruttura
Le ultime novità sulla piattaforma Linux aziendale leader a livello mondiale
Applicazioni
Approfondimenti sulle nostre soluzioni alle sfide applicative più difficili
Serie originali
Raccontiamo le interessanti storie di leader e creatori di tecnologie pensate per le aziende
Prodotti
- Red Hat Enterprise Linux
- Red Hat OpenShift
- Red Hat Ansible Automation Platform
- Servizi cloud
- Scopri tutti i prodotti
Strumenti
- Formazione e certificazioni
- Il mio account
- Supporto clienti
- Risorse per sviluppatori
- Trova un partner
- Red Hat Ecosystem Catalog
- Calcola il valore delle soluzioni Red Hat
- Documentazione
Prova, acquista, vendi
Comunica
- Contatta l'ufficio vendite
- Contatta l'assistenza clienti
- Contatta un esperto della formazione
- Social media
Informazioni su Red Hat
Red Hat è leader mondiale nella fornitura di soluzioni open source per le aziende, tra cui Linux, Kubernetes, container e soluzioni cloud. Le nostre soluzioni open source, rese sicure per un uso aziendale, consentono di operare su più piattaforme e ambienti, dal datacenter centrale all'edge della rete.
Seleziona la tua lingua
Red Hat legal and privacy links
- Informazioni su Red Hat
- Opportunità di lavoro
- Eventi
- Sedi
- Contattaci
- Blog di Red Hat
- Diversità, equità e inclusione
- Cool Stuff Store
- Red Hat Summit