In my previous two blogs, I discussed how businesses focus on deployable IoT solutions versus PoCs (proof of concepts) and the value of bringing intelligence to the edge. This time, I would like to look at the importance of combining existing enterprise data with an IoT data stream.
Most enterprises have multiple constituencies of infrastructure, applications, employees, customers, suppliers, processes and policies that are needed to run the business. Any new systems, including those dealing with IoT, need to be architected to fit within this context. The real value of IoT lies in
combining the IoT-generated data with other enterprise data, but a key challenge is how to best integrate them.
The data integration challenge needs to be solved at several levels: data transformation (from one protocol to other), routing (getting data to where it is needed), manipulation and analysis. Let’s explore this further by looking at the example of data analytics, an integral part of the IoT solution. After all, what is the point of collecting the IoT data in a Hadoop data lake if we’re not going to derive business value from it. Before the data scientists can build data models to derive intelligence from the IoT data, it requires several considerations:
- Clearly defining business problems (similar to operational goals like reducing defect rates, finding the most efficient routes vs. nebulous goals of finding intelligence in sensor data)
- Ways to integrate structured sensor data with other structured and unstructured enterprise data
- Addressing constraints (data governance or security requirements)
- Deciding on analytics tools like SPSS, SAS or R (open source)
The data scientist will need to work with cross-functional teams of subject matter experts to build the data model. For example, a company seeking to perform predictive analytics for aircraft engines gets data from various on-board sensors to monitor temperature and vibration data from the engines and braking systems. This data is then analyzed to establish patterns and relationships between various variables. This expertise is provided by engine manufacturers (GE, Rolls Royce) or by specialized vendors like Scientific Monitoring Systems (acquired by Intel). These vendors have deep domain expertise in engine controls, aerodynamics, and machine learning to predict engine component failure. This allows airlines to schedule predictive maintenance on demand instead of through time-based or reactive maintenance. The data scientists at these vendors work with domain experts to create and continuously enhance these data models which provide reliable results. The data scientist has to be careful of false alarms as it costs the airlines to schedule service where none is needed or worse - a false negative - failing to service an engine that should have been scheduled, resulting in flight delays or accidents. What kinds of tools do the data scientists need that will allow them to create data models that can work across various sources of data for IoT use cases?
Similar challenges will be faced by each stakeholder in the IoT value chain. These stakeholders include factory technicians, operations managers, developers, system integrators, data administrators, system administrators, etc. Each of these challenges has to be addressed using the same rigor needed to build mission-critical, enterprise systems.
In summary, the true value of IoT is not in the IoT-generated data itself, but in combining it with existing enterprise data. It is the sum of these parts that will help drive new insights into business problems or uncover new opportunities.
저자 소개
Ishu Verma is Technical Evangelist at Red Hat focused on emerging technologies like edge computing, IoT and AI/ML. He and fellow open source hackers work on building solutions with next-gen open source technologies. Before joining Red Hat in 2015, Verma worked at Intel on IoT Gateways and building end-to-end IoT solutions with partners. He has been a speaker and panelist at IoT World Congress, DevConf, Embedded Linux Forum, Red Hat Summit and other on-site and virtual forums. He lives in the valley of sun, Arizona.
채널별 검색
오토메이션
기술, 팀, 인프라를 위한 IT 자동화 최신 동향
인공지능
고객이 어디서나 AI 워크로드를 실행할 수 있도록 지원하는 플랫폼 업데이트
오픈 하이브리드 클라우드
하이브리드 클라우드로 더욱 유연한 미래를 구축하는 방법을 알아보세요
보안
환경과 기술 전반에 걸쳐 리스크를 감소하는 방법에 대한 최신 정보
엣지 컴퓨팅
엣지에서의 운영을 단순화하는 플랫폼 업데이트
인프라
세계적으로 인정받은 기업용 Linux 플랫폼에 대한 최신 정보
애플리케이션
복잡한 애플리케이션에 대한 솔루션 더 보기
오리지널 쇼
엔터프라이즈 기술 분야의 제작자와 리더가 전하는 흥미로운 스토리
제품
- Red Hat Enterprise Linux
- Red Hat OpenShift Enterprise
- Red Hat Ansible Automation Platform
- 클라우드 서비스
- 모든 제품 보기
툴
체험, 구매 & 영업
커뮤니케이션
Red Hat 소개
Red Hat은 Linux, 클라우드, 컨테이너, 쿠버네티스 등을 포함한 글로벌 엔터프라이즈 오픈소스 솔루션 공급업체입니다. Red Hat은 코어 데이터센터에서 네트워크 엣지에 이르기까지 다양한 플랫폼과 환경에서 기업의 업무 편의성을 높여 주는 강화된 기능의 솔루션을 제공합니다.