With an aim to separate hype from reality in Day 4 at Sibos, I was on a mission to understand what the existing and near-term applications of Artificial Intelligence (AI) were in banking. With machine learning described as “table stakes” now, Richard Harris (Feedzai) during The Ethical Side of AI panel, suggested that the closest we have to understanding the impact AI will have is by looking at the internet – knowing the internet would change everything but twenty years ago, we didn’t know how – describes the state of AI today.
Risk mitigation appears to be an active area for current AI application. For example, with a worldwide impact of money laundering estimates between 2% to 5% of global GDP (upwards of $2 trillion USD), Heike Riel, IBM (Sensemaker: The interconnectedness of everything and advanced AI) cited a case where they found a reduction in false positives of 95% to 50%, along with a reduction of 27% in manual effort by using AI/ML to help discover the undefined unknowns in the data. Using AI to help triage fraud for human interpretation and action is considered ‘narrow’ AI – the application of AI to one particular task.
Broadening the scope of AI beyond a single task may be on the horizon. In the future I can see a time when an AI would become a new hire to the bank, employed to derive new, company-wide insights to improve processes, identify efficiencies or ways to improve customer experience.
As Ayesha Khanna (ADDO AI) mentioned in her breakfast keynote, we will need to be able to accept the insights from AI for this to be successful, and not dismiss them simply because we never thought of them before.
For now AI use is openly described for risk mitigation and advisory applications with a general expectation that this is only the beginning. And although AI begins with a use case – with a defined goal and data to learn from – ultimately the application of AI needs to create value. Currently value is focused on generating efficiencies, improving operations and cutting costs. But in the broader applications of ‘true AI’ we will likely need to reconsider how to measure value.
As Genevieve Bell put it during the closing plenary we will need question the metrics upon which we assess value, especially when considering autonomous applications of AI. Harkening back on previous industrial revolutions that created entirely new disciplines (like computer science during the 3rd industrial revolution) to this 4th industrial revolution powered data, AI, sensors and other advances she pointed out the likelihood of entirely new disciplines to form.
Perhaps by then we’ll also have new metrics to ascribe value of AI – like measuring the transparency, or trustworthiness of AI. The human doesn’t leave the equation in AI, for labeling data for example, but we may need to redefine how we treat it – possibly more, as Bell termed it during her session, a colleague than an algorithm. To learn more about some of the people we are working with in AI, and their stories, don’t miss “The People behind OpenAI” from our Open Source Stories series.
Sobre o autor
Described as a pioneer and one of the most influential people by CRMPower, Fiona McNeill has worked alongside some of the largest global organizations, helping them derive tangible benefit from the strategic application of technology to real-world business scenarios.
During her 25 year professional tenure, she has led teams, product strategy, marketing, and consulted across a wide range of industries, while at SAS, IBM Global Services, and others. McNeill co-authored Heuristics in Analytics with Dr. Carlos Andre Pinheiro, has previously published both in academic and business journals, and has served on the board of the Cognitive Computing Consortium. She received her M.A. in Quantitative Behavioral Geography from McMaster University and graduated with a B.Sc. in Bio-Physical Systems, University of Toronto.
Navegue por canal
Automação
Últimas novidades em automação de TI para empresas de tecnologia, equipes e ambientes
Inteligência artificial
Descubra as atualizações nas plataformas que proporcionam aos clientes executar suas cargas de trabalho de IA em qualquer ambiente
Nuvem híbrida aberta
Veja como construímos um futuro mais flexível com a nuvem híbrida
Segurança
Veja as últimas novidades sobre como reduzimos riscos em ambientes e tecnologias
Edge computing
Saiba quais são as atualizações nas plataformas que simplificam as operações na borda
Infraestrutura
Saiba o que há de mais recente na plataforma Linux empresarial líder mundial
Aplicações
Conheça nossas soluções desenvolvidas para ajudar você a superar os desafios mais complexos de aplicações
Programas originais
Veja as histórias divertidas de criadores e líderes em tecnologia empresarial
Produtos
- Red Hat Enterprise Linux
- Red Hat OpenShift
- Red Hat Ansible Automation Platform
- Red Hat Cloud Services
- Veja todos os produtos
Ferramentas
- Treinamento e certificação
- Minha conta
- Suporte ao cliente
- Recursos para desenvolvedores
- Encontre um parceiro
- Red Hat Ecosystem Catalog
- Calculadora de valor Red Hat
- Documentação
Experimente, compre, venda
Comunicação
- Contate o setor de vendas
- Fale com o Atendimento ao Cliente
- Contate o setor de treinamento
- Redes sociais
Sobre a Red Hat
A Red Hat é a líder mundial em soluções empresariais open source como Linux, nuvem, containers e Kubernetes. Fornecemos soluções robustas que facilitam o trabalho em diversas plataformas e ambientes, do datacenter principal até a borda da rede.
Selecione um idioma
Red Hat legal and privacy links
- Sobre a Red Hat
- Oportunidades de emprego
- Eventos
- Escritórios
- Fale com a Red Hat
- Blog da Red Hat
- Diversidade, equidade e inclusão
- Cool Stuff Store
- Red Hat Summit