With the release of RHEL AI 1.3, we’re excited to introduce context aware chunking powered by the Docling project, a significant enhancement that expands the capabilities of taxonomy contributions, pushes the limits of synthetic data generation and offers enhanced document support (pdf and md). Through our collaboration with IBM Research and adoption of Docling, RHEL AI 1.3 now features a new data ingestion pipeline.
This update enables seamless integration of PDF documents, marking a shift from the previous Markdown-only support in qna.yaml and a new chunking strategy for documents, context aware chunking which allows better representation of different document elements.
What’s new?
PDF support
Contributors can now reference PDF documents directly in taxonomy submissions alongside Markdown files. This update eliminates the need to manually convert PDFs to Markdown, streamlining the contribution process.
With the support of pdf documents, end users can bring their personal/enterprise documents directly for model customization for their use cases. In RHEL AI 1.4, more document types such as word, pptx, docx, html will be supported allowing users to support a broad range of use cases.
Docling adoption/context aware chunking
With the adoption of Docling, the #1 open source document paper on GitHub, we are introducing a new context aware chunking capability. It intelligently recognizes and processes different document elements – from text and tables to figures, lists and columns. This means more accurate extraction and better understanding of your documents' structure and meaning. This is an improvement over naive chunking being used in RHEL AI 1.2.
We've also enhanced our synthetic data generation (SDG) pipeline to leverage these new capabilities. We are continuing our collaboration with IBM Research to push the boundaries of context-aware document processing even further in future releases.
Docling parses PDFs and converts them into structured, context-aware chunks. The tool accurately represents critical semantic elements, including text, tables and images and enhances contextual understanding for better synthetic data generation.
Why this matters
The addition of PDF support overcomes the limitations of Markdown-only workflows, enabling contributors to include richer, more detailed documents in their submissions. Docling’s robust chunking capabilities ensure that PDFs are no longer a barrier to streamlined knowledge integration, making taxonomy contributions faster, easier, and more effective.
Naive chunking strategies often result in poor outputs for synthetic data generation and thereby finetuning of language models. Context aware chunking can result in reduced hallucinations involving complex document structures. This can facilitate seamless integration across various departments within an organization, each handling complex document representations. Another capability we are working on is hierarchical context aware chunking that captures additional meta data such as headings/captions for better context.
Sobre os autores
Aditi is a Technical Product Manager at Red Hat, working on Instruct Lab’s synthetic data generation capabilities. She is passionate about leveraging generative AI to create seamless, impactful end user experiences.
Aakanksha Duggal is a Senior Data Scientist at Red Hat, leading synthetic data generation efforts on Instructlab. Her work focuses on advancing scalable and impactful technologies in the field of AI.
Navegue por canal
Automação
Últimas novidades em automação de TI para empresas de tecnologia, equipes e ambientes
Inteligência artificial
Descubra as atualizações nas plataformas que proporcionam aos clientes executar suas cargas de trabalho de IA em qualquer ambiente
Nuvem híbrida aberta
Veja como construímos um futuro mais flexível com a nuvem híbrida
Segurança
Veja as últimas novidades sobre como reduzimos riscos em ambientes e tecnologias
Edge computing
Saiba quais são as atualizações nas plataformas que simplificam as operações na borda
Infraestrutura
Saiba o que há de mais recente na plataforma Linux empresarial líder mundial
Aplicações
Conheça nossas soluções desenvolvidas para ajudar você a superar os desafios mais complexos de aplicações
Programas originais
Veja as histórias divertidas de criadores e líderes em tecnologia empresarial
Produtos
- Red Hat Enterprise Linux
- Red Hat OpenShift
- Red Hat Ansible Automation Platform
- Red Hat Cloud Services
- Veja todos os produtos
Ferramentas
- Treinamento e certificação
- Minha conta
- Suporte ao cliente
- Recursos para desenvolvedores
- Encontre um parceiro
- Red Hat Ecosystem Catalog
- Calculadora de valor Red Hat
- Documentação
Experimente, compre, venda
Comunicação
- Contate o setor de vendas
- Fale com o Atendimento ao Cliente
- Contate o setor de treinamento
- Redes sociais
Sobre a Red Hat
A Red Hat é a líder mundial em soluções empresariais open source como Linux, nuvem, containers e Kubernetes. Fornecemos soluções robustas que facilitam o trabalho em diversas plataformas e ambientes, do datacenter principal até a borda da rede.
Selecione um idioma
Red Hat legal and privacy links
- Sobre a Red Hat
- Oportunidades de emprego
- Eventos
- Escritórios
- Fale com a Red Hat
- Blog da Red Hat
- Diversidade, equidade e inclusão
- Cool Stuff Store
- Red Hat Summit