
Performance Analysis and Tuning Red Hat
Enterprise Linux Part 1 (what’s new in RHEL8)

D. John Shakshober
Sr Distinguished Eng
Tech Director RH Perf+Scale

Larry Woodman
Sr Distinguished Eng
R H Kernel Eng

8 May, 2019

Joe Mario
Sr Principal Perf+Scale Eng
Kernel, Network, low latency, perf tools

Sanjay Rao
Sr Principal Perf+Scale Eng
Database, IO performance

RHEL Performance Engineering 2 Red Hat Confidential

● RHEL Evolution 5->6->7-8 , What’s new for perf in RHEL8!
● Tuned and Perf Lab results
● IO and Network Improvements

● Disk IO
● Database / File system improvements w/ RHEL8

● RHEL Memory management
● 5 Level Page Tables
● NvDIMM arch and early certification / prelimin perf
● NonUniform Memory Access (NUMA)
● HugePages

● Part II Meet The Experts Room 150 - all above + additional topics
● Low Latency Network (cpu_partitioning tuned)
● XDP, eBPF, cgroup V2 (tech preview)
● Perf tool, tuna, PCP copilot … etc

 Agenda: Performance Analysis Tuning Part I+II

 Red Hat Performance Engineering

RHEL Performance Evolution

RHEL5

Static Hugepages

CPU Sets

Ktune on/off

CPU Affinity (taskset)

NUMA Pinning (numactl)

irqbalance

RHEL6

Transparent Hugepages

Tuned - Choose Profile

NUMAD - userspace

cgroups

irqbalance - NUMA
enhanced

RHEL7

Tuned -
throughput-performance
(default)

Automatic
NUMA-balancing

Containers/OCI - CRI-O
(podman)

irqbalance - NUMA
enhanced

RHEL8
5 level PTEs
(THP cont)

Tuned: Throughput/
Lat - SSD/Nvdimm

Multi-Arch:
 Intel/ AMD/
 ARM/ Power

Networking:
XDP and eBPF

Acceleration
GPU/FPGA/Offloads

 RHEL tuned parameters that effect performance (sysctls)

VM Tunables

Reclaim Ratios
● vm.swappiness
● vm.vfs_cache_pressure
● vm.min_free_kbytes

Writeback Parameters 30/10 -> 10/3
● vm.dirty_background_ratio
● vm.dirty_ratio

Readahead parameters per device 512-> 4k
● /sys/block/<bdev>/queue/read_ahead_kb

CPU Scheduler tunables

 Throughput Performance
 Scheduler quantum (default 4/10 ms,-> 10/15 ms)

● kernel.sched_min_granularity_ns=10000000
● kernel_sched_wakeup _granularity_ns = 15000000

Weight function on how often to migrate - 5ms -> 50ms
● kernel.sched_migration_cost_ns=50000000

Latency Performance tuning
● Decrease quantum above to 4 /10 ms

Adjust power management - BIOS OS controlled
● pstates - governor=performance
● energy_perf_bias=performance
● cstate - force_latency=1

Disable scaning tools for better determinism
● Disable numa balance

○ kernel.numa_balancing = 0
● Disable Transparent HugePages

○ mm.redhat_transparent_hugepage never

Non-Uniform Memory Access (NUMA) Hugepages

Auto numa balancing at scheduling time
● kernel.numa_balancing = 1
● Adjust numa scan interval 1000 ms -> 100 ms
● vm.zone_reclaim_mode = 1 (reclaim local node vs spill)

Transparent HugePages
● mm.redhat_transparent_hugepage enabled

RHEL Performance Engineering 5

 Tuned Profiles throughout Red Hat's Product Line
RHEL7/8 Laptop/Workstation

balanced

RHEL7/8 KVM Host, Guest
virtual-host/guest

Red Hat Storage
rhs-high-throughput

Open Shift Platform
atomic-host/guest

RHEL7/8 Server/HPC
throughput-performance

RHV/OSP
virtual-host

RHEL OSP (compute node)
Virtual-host/guest

Open Shift Platform
control-plane/node

NFV / RT
cpu_partitioning/rt

Children/Grandchildren

Tuned network-latency Profile

latency-performance
force_latency=1
governor=performance
energy_perf_bias=performance
min_perf_pct=100
vm.dirty_ratio=10
vm.dirty_background_ratio=3
vm.swappiness=10
kernel.sched_min_granularity_ns=10000000
kernel.sched_migration_cost_ns=5000000

network-latency
include=latency-performance
transparent_hugepages=never
net.core.busy_read=50
net.core.busy_poll=50
net.ipv4.tcp_fastopen=3
kernel.numa_balancing=0

Children

Parents

latency-performancethroughput-performance

network-latencynetwork-throughput

virtual-host

virtual-guest

balanced

desktop

GatewayFeed Handler Matching Eng.

RHEL Performance Engineering 7 Red Hat Confidential

● Performance Testing at Red Hat

● CPU

● Intel - Haswell /Broadwells, SkyLakes, AMD EPYC, ARM

● Memory - virtual memory

● 512 Gb upto 24 TB (partner limits)

● Networks

● Intel, Mellanox, Solarflare 10, 25, 40, 100 Gb

● Disk/Filesystem IO

● xfs, ext4/3, gfs2, nfs, gluster, ceph

● Security - CVE impacts, Retpoline for all Intel

 RHEL8 Performance Lab Results

RHEL Performance Engineering 8 Red Hat Confidential

 RHEL 8 vs RHEL 7 Workload Performance Gains

RHEL Performance Engineering 9 Red Hat Confidential

 RHEL 8 Performance of AIM7 w/ different loads
AIM7 XFS - multiuser, throughput in jobs/min (Bigger==Better)

RHEL Performance Engineering 10 Red Hat Confidential

 RHEL 8 Performance improvements w/ AIM7
AIM7 Shared User Mix - multiuser benchmark, throughput in jobs/min +35.6%

RHEL 7.6, page fault stack not present.

 raw_spin_unlock_irqrestore
 _raw_spin_unlock_irqrestore
 __wake_up
 xlog_state_do_callback
 xlog_state_done_syncing
 xlog_iodone
 xfs_buf_ioend
 Xfs_buf_ioend_work
RHEL 8

filemap_map_pages+187
handle_pte_fault+2406
__handle_mm_fault+1066
handle_mm_fault+218
__do_page_fault+586
do_page_fault+50
page_fault+30

RHEL Performance Engineering 11 Red Hat Confidential

 RHEL 8 Performance BLAS w/ AVX* Inst
Intel 2nd generation of Intel® Xeon® Scalable processors

RHEL Performance Engineering 12 Red Hat Confidential

 RHEL 8 Network Performance w/ uperf
Open Stack Control Plane Network Performance - 10 Gb Intel Nic

RHEL Performance Engineering 13 Red Hat Confidential

 RHEL8 Tech Preview - XDP Performance
● New Network Performance – TCP vs XDP vs DPDK in RHEL8 (2-20x gain)

RHEL Performance Engineering 14 Red Hat Confidential

RHEL 8 - Database tuning tips
● MariaDB

○ Huge pages
■ Reduce TLB misses
■ For wiring down database pages
■ Prevent swapping

○ Lower dirty background ratio / Increase dirty ratio
■ To start early reclaim of dirty blocks

○ Size buffer pool based on user connections (or use connection pooling)
■ To prevent memory pressure

● Postgres
○ Use Huge pages

■ Reduce TLB misses
■ For wiring down database pages
■ Prevent swapping

○ Lower dirty background ratio / Increase dirty ratio
■ To start early reclaim of dirty blocks

○ Configure Shared buffers as well as effective cache size to avoid memory pressure

RHEL Performance Engineering 15 Red Hat Confidential

 RHEL 8 Performance Open Source DBs

RHEL Performance Engineering 16 Red Hat Confidential

 RHEL 8 Performance Open Source DBs

RHEL Performance Engineering 17 Red Hat Confidential

RHEL 8 - Database tuning tips
Oracle 12c

○ Implement huge pages
■ Reduce TLB misses
■ For wiring down database pages
■ Prevent swapping

○ Turn off Auto numa
■ To prevent conflict with Oracle NUMA optimization

○ Turn of transparent huge pages
■ To reduce CPU overhead of THP scan

○ Lower dirty background ratio
■ Start flushing dirty blocks and reclaim

○ Increase dirty ratio
■ Delay the process of hitting dirty blocks threshold

○ Use numa pinning in multiple instance environments (including listener process)
■ To take advantage of NUMA localization

○ Size SGA based on user connections (or use connection pooling)
■ To prevent memory pressure

RHEL Performance Engineering 18 Red Hat Confidential

 RHEL 8 Performance Legacy DB

Red Hat Summit 2019

New with SQL Server on Red Hat Enterprise Linux 8:
Increased Performance

● Updates to the mssql tuned profile optimize tuning for decision
support workloads

● New TCP/IP stack delivers increased performance and BBR
congestion control

● Storage block devices now use multiqueue scheduling to make
the best use of bandwidth available from modern flash-based
storage devices

● XFS FUA enhancements for SQL Server - write request I/O traffic
is reduced by ~50% for a SQL Server write-intensive workloads

https://blogs.msdn.microsoft.com/bobsql/2018/12/18/sql-server-on-linux-forced-unit-access-fua-internals/
https://blogs.msdn.microsoft.com/bobsql/2018/12/18/sql-server-on-linux-forced-unit-access-fua-internals/

RHEL Performance Engineering 20 Red Hat Confidential

 RHEL 8 Performance DB Performance

RHEL Performance Engineering 21 Red Hat Confidential

Performance Highlights:

● Microbenchmarks

● Multiq SCSI - direct attached and fiberchannel, iozone, fio

● Network – Netperf/Uperf (TCP/UDP) - improved sm/med packet

● AIM multiuser (shared, db, fileserver) - lower syscall overhead, VM changes.

● CVE impacts, use retpoline for spectre Intel (on Skylake vs IBRS)

● Databases – Oracle, MariaDB, Postgres, Mongo, SQLserver

● Improvements in XFS journal / FUA opts

● Virtual Memory (contention), algorithm for VM flushing dirty pages

● Java – SPECjbb, MAX bops 2005 and 2015

● SAP – ERP Sales and Distribution (SD bm) and Hana Analytics tpcds/bw loads

● SAS – Mixed Analytics (scale up), SAS Grid (cluster)

 RHEL 8 Performance Summary

Numa and Memory Perf Tuning

Typical Four-Node NUMA System

Node 0 RAM

QPI links, IO, etc.

L3 Cache

Node 3Node 1

Node 0 Node 2

Core 4
Core 2
Core 0

Core 6
Core 8
Core...

Core 5
Core 3
Core 1

Core 7
Core 9

...

Node 2 RAM

QPI links, IO, etc.

L3 Cache
Core 4
Core 2
Core 0

Core 6
Core 8
Core...

Core 5
Core 3
Core 1

Core 7
Core 9

...

Node 3 RAM

QPI links, IO, etc.

L3 Cache
Core 4
Core 2
Core 0

Core 6
Core 8
Core...

Core 5
Core 3
Core 1

Core 7
Core 9

...

Node 1 RAM

QPI links, IO, etc.

L3 Cache
Core 4
Core 2
Core 0

Core 6
Core 8
Core...

Core 5
Core 3
Core 1

Core 7
Core 9

...

Tools to display CPU and Memory (NUMA)
numactl --hardware
available: 4 nodes (0-3)
node 0 cpus: 0 4 8 12 16 20 24 28 32 36
node 0 size: 65415 MB
node 0 free: 63482 MB
node 1 cpus: 2 6 10 14 18 22 26 30 34 38
node 1 size: 65536 MB
node 1 free: 63968 MB
node 2 cpus: 1 5 9 13 17 21 25 29 33 37
node 2 size: 65536 MB
node 2 free: 63897 MB
node 3 cpus: 3 7 11 15 19 23 27 31 35 39
node 3 size: 65536 MB
node 3 free: 63971 MB
node distances:
node 0 1 2 3
 0: 10 21 21 21
 1: 21 10 21 21
 2: 21 21 10 21
 3: 21 21 21 10

 Visualize NUMA Topology: lstopo

How can I visualize my system's NUMA topology in
Red Hat Enterprise Linux?

https://access.redhat.com/site/solutions/62879
PCI Devices

NUMA Node 0 NUMA Node 1

https://access.redhat.com/site/solutions/62879

Numactl

∙The numactl command can launch
commands with static NUMA
memory and execution thread
alignment
∙# numactl -m <NODES> -N <NODES> <Workload>
∙Can specify devices of interest to
process instead of explicit node list
∙Numactl can interleave memory for
large monolithic workloads
∙# numactl --interleave=all <Workload>

numactl -m 6-7 -N 6-7 numactl --show
policy: bind
preferred node: 6
physcpubind: 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
cpubind: 6 7
nodebind: 6 7
membind: 6 7

numactl -m netdev:ens6f2 -N netdev:ens6f2 numactl --show
policy: bind
preferred node: 2
physcpubind: 20 21 22 23 24 25 26 27 28 29
cpubind: 2
nodebind: 2
membind: 2

numactl -m file:/data -N file:/data numactl --show
policy: bind
preferred node: 0
physcpubind: 0 1 2 3 4 5 6 7 8 9
cpubind: 0
nodebind: 0
membind: 0

numactl --interleave=4-7 -N 4-7 numactl --show
policy: interleave
preferred node: 5 (interleave next)
interleavemask: 4 5 6 7
interleavenode: 5
physcpubind: 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
cpubind: 4 5 6 7
nodebind: 4 5 6 7
membind: 0 1 2 3 4 5 6 7

numastat shows need for NUMA management
numastat -c qemu Per-node process memory usage (in Mbs)

PID Node 0 Node 1 Node 2 Node 3 Total
--------------- ------ ------ ------ ------ -----
10587 (qemu-kvm) 1216 4022 4028 1456 10722
10629 (qemu-kvm) 2108 56 473 8077 10714
10671 (qemu-kvm) 4096 3470 3036 110 10712
10713 (qemu-kvm) 4043 3498 2135 1055 10730
--------------- ------ ------ ------ ------ -----
Total 11462 11045 9672 10698 42877

numastat -c qemu

Per-node process memory usage (in Mbs)

PID Node 0 Node 1 Node 2 Node 3 Total
--------------- ------ ------ ------ ------ -----
10587 (qemu-kvm) 0 10723 5 0 10728
10629 (qemu-kvm) 0 0 5 10717 10722
10671 (qemu-kvm) 0 0 10726 0 10726
10713 (qemu-kvm) 10733 0 5 0 10738
--------------- ------ ------ ------ ------ -----
Total 10733 10723 10740 10717 42913

aligned

unaligned

 NUMA Nodes and Zones

End of RAM

Normal Zone

Normal Zone

4GB DMA32 Zone

16MB DMA Zone

64-bit

Node 0

Node 1

 Per Node / Zone split LRU Paging Dynamics

anonLRU

fileLRU

INACTIVE FREE

User Allocations

Reactivate

Page aging

swapout

 flush

Reclaiming

User deletions

anonLRU

fileLRU

ACTIVE

Interaction between VM Tunables and NUMA
● Dependent on NUMA: Reclaim Ratios

● /proc/sys/vm/swappiness
● /proc/sys/vm/min_free_kbytes

● /proc/sys/vm/zone_reclaim_mode

● Independent of NUMA: Reclaim Ratios
● /proc/sys/vm/vfs_cache_pressure

● Writeback Parameters

● /proc/sys/vm/dirty_background_ratio
● /proc/sys/vm/dirty_ratio

● Readahead parameters

● /sys/block/<bdev>/queue/read_ahead_kb

∙Controls NUMA specific memory allocation policy

∙To see current setting: cat /proc/sys/vm/zone_reclaim_mode
∙# echo 1 > /proc/sys/vm/zone_reclaim_mode
∙Reclaim memory from local node vs allocating from next node

∙#echo 0 > /proc/sys/vm/zone_reclaim_mode
∙ Allocate from all nodes before reclaiming memory

∙Default is set at boot time based on NUMA factor
∙In Red Hat Enterprise Linux 6.6+ and 7+,
∙Default is usually 0 – because this is better for many applications

 zone_reclaim_mode

HugePages

∙X86_64 supports 3 page sizes:
− 4KB, 2MB, 1GB
∙Standard HugePages 2MB
− Reserve/free via

● /proc/sys/vm/nr_hugepages
● /sys/devices/node/*

/hugepages/*/nrhugepages
− Used via hugetlbfs
∙GB Hugepages 1GB
− Reserved at boot time/no freeing
− RHEL7&8 allows runtime allocation & freeing
− Used via hugetlbfs
∙Transparent HugePages 2MB
− On by default via boot args or /sys
− Used for anonymous memory

 Hugepages in RHEL

Physical Memory

Virtual Address
Space

TLB

128 data
128 instruction

 2MB standard and 1GB Hugepages
echo 2000 > /proc/sys/vm/nr_hugepages
cat /proc/meminfo
MemTotal: 16331124 kB
MemFree: 11788608 kB

HugePages_Total: 2000
HugePages_Free: 2000
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 2048 kB

./hugeshm 1000

cat /proc/meminfo
MemTotal: 16331124 kB
MemFree: 11788608 kB

HugePages_Total: 2000
HugePages_Free: 1000
HugePages_Rsvd: 1000
HugePages_Surp: 0
Hugepagesize: 2048 kB

cat /proc/meminfo | grep
HugePages
HugePages_Total: 8
HugePages_Free: 0
HugePages_Rsvd: 8
HugePages_Srp: 0

#mount -t hugetlbfs none /mnt
./mmapwrite /mnt/junk 33
writing 2097152 pages of random junk to /mnt/junk
wrote 8589934592 bytes to file /mnt/junk

hugepagesz=1G, hugepagesz=1G, hugepages=8

cat /proc/meminfo | grep HugePages
HugePages_Total: 8
HugePages_Free: 8
HugePages_Rsvd: 0
HugePages_Srp: 0

 Transparent Hugepages
- Disable transparent_hugepages
 #echo never > /sys/kernel/mm/transparent_hugepages=never
 #time ./memory 15 0

real 0m12.434s
user 0m0.936s
sys 0m11.416s

cat /proc/meminfo
MemTotal: 16331124 kB
AnonHugePages: 0 kB

− Boot argument: transparent_hugepages=always (enabled by default)
− #echo always > /sys/kernel/mm/redhat_transparent_hugepage/enabled

#time ./memory 15GB
real 0m7.024s
user 0m0.073s
sys 0m6.847s

#cat /proc/meminfo
MemTotal: 16331124 kB
AnonHugePages: 15590528 kB

SPEEDUP 12.4/7.0 = 1.77x, 56%

RHEL Disk I/O and I/O Elevators

 Tuning Memory – Flushing Caches
∙Drop unused Cache – to control pagecache dynamically
✓Frees most pagecache memory
✓File cache
✓If the DB uses cache, may notice slowdown
∙NOTE: Use for benchmark environments.
∙Free pagecache
✓ # sync; echo 1 > /proc/sys/vm/drop_caches
∙Free slabcache
✓ # sync; echo 2 > /proc/sys/vm/drop_caches
∙Free pagecache and slabcache
✓ # sync; echo 3 > /proc/sys/vm/drop_caches

Per file system flush daemon

buffer

User space

Kernel

memory copy

pagecache

Read()/Write()

Flush daemon

File system

Pagecache
page

 Virtual Memory Manager (VM) Tunables

● Reclaim Ratios
●/proc/sys/vm/swappiness
●/proc/sys/vm/vfs_cache_pressure
●/proc/sys/vm/min_free_kbytes
●

● Writeback Parameters
●/proc/sys/vm/dirty_background_ratio
●/proc/sys/vm/dirty_ratio
●

● Readahead parameters
●/sys/block/<bdev>/queue/read_ahead_kb

dirty_ratio and dirty_background_ratio

100% of pagecache RAM dirty

 flushd and write()'ng processes write dirty buffers

dirty_ratio(20% of RAM dirty) – processes start synchronous
writes

 flushd writes dirty buffers in background

dirty_background_ratio(10% of RAM dirty) – wakeup flushd

 do_nothing

0% of pagecache RAM dirty

pagecache

If there is a lot of pagecache pressure one
would want to start background flushing
sooner and delay the synchronous writes.
This can be done by

● Lowering the dirty_background_ratio
● Increasing the dirty_ratio

On very large memory systems, consider
using more granularity by using

● dirty_background_bytes
● dirty_bytes

Tuning Memory – swappiness

● Not needed as much in RHEL7 & RHEL8
● Controls how aggressively the system reclaims “mapped” memory
● Default - 60%
● Decreasing: more aggressive reclaiming of unmapped pagecache
memory, thereby delaying swapping

● Increasing: more aggressive swapping of mapped memory

● Avoid swapping of database shared memory at all costs

Summary - RHEL Performance Tech/Tunables
∙ RHEL6/7/8
∙ Tuned - apply profiles for throughput (default) vs latency

■ needed w/ more with advanced devices), per product (Open Shift
OCP, Realtime RT, NFV cpu-part) vendors, (sap, sqlserver).

■ Adjust c-states, dirty-ratios, sched quantum/migration cost.
∙ NumaD/ AutoNUMA - With Red Hat Enterprise Linux

■ AutoNUMA / NumaD can significantly improve performance for
server consolidation or replicated parallel workloads.

∙ HugePages wired-down, THP for vm’s containers, DB/Java 2MB or 1GB
∙ Tools - *stat, PCP, collectd, Perf (c-2-c), NUMAstat/ctl), tuna, pbench
tools to measure and/or fine control your application on RHEL.

∙Q+A at “Meet The Experts” - Room 150

 RHEL tuned parameters that effect performance (sysctls)

VM Tunables

Reclaim Ratios
● vm.swappiness
● vm.vfs_cache_pressure
● vm.min_free_kbytes

Writeback Parameters 30/10 -> 10/3
● vm.dirty_background_ratio
● vm.dirty_ratio

Readahead parameters per device 512-> 4k
● /sys/block/<bdev>/queue/read_ahead_kb

CPU Scheduler tunables

 Throughput Performance
 Scheduler quantum (default 4/10 ms,-> 10/15 ms)

● kernel.sched_min_granularity_ns=10000000
● kernel_sched_wakeup _granularity_ns = 15000000

Weight function on how often to migrate - 5ms -> 50ms
● kernel.sched_migration_cost_ns=50000000

Latency Performance tuning
● Decrease quantum above to 4 /10 ms

Adjust power management - BIOS OS controlled
● pstates - governor=performance
● energy_perf_bias=performance
● cstate - force_latency=1

Disable scaning tools for better determinism
● Disable numa balance

○ kernel.numa_balancing = 0
● Disable Transparent HugePages

○ mm.redhat_transparent_hugepage never

Non-Uniform Memory Access (NUMA) Hugepages

Auto numa balancing at scheduling time
● kernel.numa_balancing = 1
● Adjust numa scan interval 1000 ms -> 100 ms
● vm.zone_reclaim_mode = 1 (reclaim local node vs spill)

Transparent HugePages
● mm.redhat_transparent_hugepage enabled

Red Hat Performance Whitepapers
● Red Hat Performance Tuning Guide

● Red Hat Low Latency Tuning Guide

● Red Hat Virtualization Tuning Guide

● RHEL Blog / Developer Blog

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html-single/Performance_Tuning_Guide/index.html
https://access.redhat.com/articles/1323793
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html-single/Virtualization_Tuning_and_Optimization_Guide/index.html
http://rhelblog.redhat.com/
http://developerblog.redhat.com/

New to RHEL8:

X86_64 5-level page table/57-bit memory support
and

Persistent memory/NvDIMM support

57 bit address space
 5-level page tables

KernelUser unused

64PB 64PB

2^56 2^56

 unused

56 bit kernel address space

Vmalloc: kernel virtual spaceKmalloc: direct mapped RAM

32PB/2^55(current HW limited to 4PB)

2^64 -2^56 2^64

32PB/2^55

2^64 - 2^55

X86_64 5-level page table

Persistent Memory/NvDIMM Support in RHEL
● Persistent memory is non-volatile memory NVDIMMs(aka NVRAM) that can be plugged into the DRAM slots.

− Can/will be VERY large(need 5-page table support)

● NVRAM can not be accessed via the PCI interface like SSDs.

● NVRAM is accessed via the memory bus, its in the physical address space just like RAM

● NVRAM is primarily used for storage but can be configured as RAM(systems with NVDIMMs must also have DRAM).

− Choosing if you want the NVDIMMs to be used as storage or RAM is controlled via BIOS settings.

− In storage mode the DRAM is the system memory and the NVRAM is the storage.

− In memory mode the NVDIMMs are the system memory and the DRAM is a cache for NVDIMMs.

● DAX – Direct Access File System: allows pages of NVRAM to be mapped directly in the pagecache.

− Eliminates multiple copies of data

− Reduces memory demand.

− Eliminates need for pagecache write-back operations needed for disks and SSDs.

NVRAM as the storage device
pagecache

Buffer

Read()/write()

User virtual address space

NVRAM storage

Background IO

DAX uses NVRAM for pagecache
NVRAM pagecache

Buffer

Read()/write()

User virtual address space

DAX can map pagecache NVRAM into user buffer
NVRAM pagecache

Buffer

mmap()’d

User virtual address space

NVDIMM Memory mode
● NVRAM is the system RAM

● DRAM is used as a cache for the NVRAM.

− A direct-mapped physical cache scheme is used in memory mode.

− A page coloring algorithm must be used to optimize the NVRAM cache.

− Memory references run at DRAM speed when working set is in DRAM cache

● NVRAM is typically 4 to 16 times the size of the DRAM.

● The DRAM speed and latency is orders of magnitude faster than the NVRAM.

● Expect a memory bandwidth slowdown when DRAM is too small.

Memory mode NVDIMM support

DRAM cache

Banks of NVDIMM Memory

Part II Meet the Experts - room 150
● Network Performance

○ Low Latency
■ Nohz_full
■ Cpu_partitioning
■ XDP + eBPF Denial of Service

● Perf Tools
○ perf c-2-c
○ tuna

● CVE impacts / tunable

 RHEL-7 nohz_full option
Patchset Goal:

Stop interrupting userspace tasks
Move timekeeping to non-latency-sensitive cores

If nr_running=1, then scheduler/tick can avoid that core
Default disabled
Opt-in via nohz_full cmdline option

Kernel Ticks for:
timekeeping (gettimeofday)
Scheduler load balancing
Memory statistics (vmstat)

RHEL6 Tickless
User tasks interupted 1000x/sec

 Tick Tick No Tick Tick Tick

Time (CONFIG_HZ=1000)

 Userspace Task Timer Interrupt Idle

Isolcpus – the widely used “isolation” hammer.

0 40 1 41 2 42 3 43

4 44 5 45 6 46 7 47

8 48 9 49 10 50 11 51

12 52 53 14 54 15 55

16 56 17 57 18 58 19 59

13

Node 0

Boot with “isolcpus=1,5,9,13,17”
Pin your application’s individual threads to the isolated cores.
Life is good.

Isolcpus – no scheduler load balancing
Boot your system with “isolcpus=1,4,5,9,13,17”

Then run your multithreaded application:
 taskset -c 1,4,5,9,13,17 my_low_latency_app

Result:

If you pin each thread to a cpu:
 life is good.
 Else
 the entire application runs only on cpu 1.

Larry Woodman
Joe Mario

62

“cpu-partitioning” tuned profile
For latency sensitive applications needing kernel scheduler load balancing.

Does all the “heavy lifting” for you.

1) Just edit /etc/tuned/cpu-partitioning-variables.conf
Isolated CPUs with kernel load balancing:
isolated_cores=10-39
Isolated CPUs without kernel load balancing:
no_balance_cores=2-9

1) Set the cpu-partitioning tuned profile.
tuned-adm profile cpu-partitioning

1) Then reboot!

Larry Woodman
Joe Mario

63

Cpu-partitioning – after reboot you have:

● Adds the following to the kernel boot line:
skew_tick=1
nohz=on
nohz_full=2-39
rcu_nocbs=2-39
tuned.non_isolcpus=0000000003
intel_pstate=disable
Nosoftlockup

● Moves all users tasks off the isolated cpus
● Including all children of systemd (pid 1)

● All future processes too, as default system cpu affinity is changed.

Larry Woodman
Joe Mario

64

CPU Partitioning tuned profile
Simple, flexible low-latency cpu isolation tuning.

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 37 39

Kernel
Background activities

Kernel Interrupts
OVS Background process

OVS “poll mode driver”
PMD Threads

VNF Threads

QEMU emulation process

Available
as of

RHEL7.4

36 38

Numa Node

Need isolation
without

load balancing.

Free non-isolated
cpus

Need isolation
with
load balancing.

Larry Woodman
Joe Mario

65

Cpu-partitioning – after reboot (continued):

● kernel.hung_task_timeout_secs = 600
● kernel.nmi_watchdog = 0
● vm.stat_interval = 10
● kernel.timer_migration = 1
● net.core.busy_read = 50
● net.core.busy_poll = 50
● kernel.numa_balancing = 0
● kernel.sched_min_granularity_ns = 10000000
● vm.dirty_ratio = 10
● vm.dirty_background_ratio = 3
● vm.swappiness = 10
● kernel.sched_migration_cost_ns = 5000000
● Disables Transparent Hugepages

RHEL8 eBPF Tech preview Denial Of Service (DoS)
● The traffic flow is unidirectional from both interfaces.
● The packets are routed between the two DUT interfaces using kernel routing table and forwarded to

the other traffic generator port respectively.
● A binary search is done to find the max packet rate till the test passes.
● The test is passed when:

○ No TCP packet is received on both interfaces
○ 0.002% of UDP packets drop threshold is maintained.

● Iptables filter and drops TCP port 80 packets:
○ Rules are added once in filter table and then in raw table for performance comparison

● For XDP, we are using xdp_ddos_blacklist[1] program which is loaded on both DUT interfaces and
drops packets arriving on TCP port 80.

 [1]: https://github.com/netoptimizer/prototype-kernel/blob/master/kernel/samples/bpf/xdp_ddos01_blacklist_kern.c

https://github.com/netoptimizer/prototype-kernel/blob/master/kernel/samples/bpf/xdp_ddos01_blacklist_kern.c
https://github.com/netoptimizer/prototype-kernel/blob/master/kernel/samples/bpf/xdp_ddos01_blacklist_kern.c

Test setup

Traffic Generator Device under test

NIC

NIC

NIC

NIC

Network
Filter(iptables,
XDP)

10% 90%
TCPUDP

90%
TC

P / TC
P(R

)

DROP

10%

UDP

10%

UDP(R)

10%

UDP

10%

UDP(R)

10% 90%
TCP(R)UDP(R)

* (R): Reverse Direction

 perf c2c for cpu cacheline false sharing detection

Critical for:
● Shared memory applications
● Multi-threaded apps spanning multiple numa nodes

Shows everything needed to find false sharing:
■ All readers and writers contending for hottest cachelines.
■ The cpus and nodes they executed on.
■ Process names, data addr, ip, pids, tids, src file and line number.
■ Where hot variables are sharing cachelines, (like locks).
■ Where hot structs are spanning cachelines, (like an unaligned mutex).

Detailed blog: https://joemario.github.io/blog/2016/09/01/c2c-blog/

Works
on R8

64 byte cache line

Node 0

 int a; offset 0
 mutex offset 8
 offset 16
 offset 24
 offset 32
 offset 40
 long b; offset 48
 long seq_cnt; offset 56

CPU CPU CPU CPU CPU CPU CPU CPU ...

Node 1
CPU CPU CPU CPU CPU CPU CPU CPU ...

Node 2
CPU CPU CPU CPU CPU CPU CPU CPU ...

Node 3
CPU CPU CPU CPU CPU CPU CPU CPU ...

Gets you contention like this:
● Can be quite painful

Where are my processes and threads running?
Two ways to see “where it last ran”.
1) ps -T -o pid,tid,psr,comm <pid>

∙ # ps -T -o pid,tid,psr,comm `pidof pig`
 PID TID PSR COMMAND
 3175391 3175391 73 pig
 3175391 3175392 1 pig
 3175391 3175393 25 pig
 3175391 3175394 49 pig

2) Run “top”, then enter “f”, then select “Last used cpu” field

Are my threads and data aligned on same numa node?
 Use perf (soon to report node & phys addr info where data resides)

perf mem record -- --sample-cpu foo_exe
perf mem report -F mem,cpu,dcacheline,snoop,symbol -s dcacheline --stdio

”Last Ran CPU” column

Tuna: command line or gui

Fine grained process view & control
●Adjust scheduler tunables, (sched policy, RT priority and CPU affinity)
●See results instantly
●Tune threads and IRQ handlers.
●Isolate CPU cores and sockets,

Examples:
 Move an irq to cpu 5

tuna -c5 -q eth4-rx-4 –move

 Move all irqs named “eth4*” away from numa node 1
tuna -S 1 -i -q ‘eth4*’

 Move all rcu kernel threads to cpus 1 and 3
tuna -c1,3 -t ‘*rcu*’ --move

 Tuna example

 Tuna GUI Capabilities Updated for RHEL7

INSERT DESIGNATOR, IF NEEDED

 CVE Performance overrides

76

To disable CVE on RHEL-{6,7,8}, add the following to the boot grub line
 spectre_v2=off spec_store_bypass_disable=off nopti l1tf=off

Your resulting vulnerabilities files should then look something like these:
grep . /sys/devices/system/cpu/vulnerabilities/*

/sys/devices/system/cpu/vulnerabilities/l1tf:Mitigation: PTE Inversion;
VMX: vulnerable
/sys/devices/system/cpu/vulnerabilities/meltdown:Vulnerable
/sys/devices/system/cpu/vulnerabilities/spec_store_bypass:Vulnerable
/sys/devices/system/cpu/vulnerabilities/spectre_v1:Mitigation: __user
pointer sanitization
/sys/devices/system/cpu/vulnerabilities/spectre_v2:Vulnerable, IBPB:
disabled, STIBP: disabled

INSERT DESIGNATOR, IF NEEDED

 CVE Performance Defaults w/ SkyLake

77

grep . /sys/devices/system/cpu/vulnerabilities/*
/sys/devices/system/cpu/vulnerabilities/l1tf:Mitigation: PTE
Inversion; VMX: conditional cache flushes, SMT vulnerable

/sys/devices/system/cpu/vulnerabilities/meltdown:Mitigation: PTI

/sys/devices/system/cpu/vulnerabilities/spec_store_bypass:Mitigation:
Speculative Store Bypass disabled via prctl and seccomp

/sys/devices/system/cpu/vulnerabilities/spectre_v1:Mitigation: __user
pointer sanitization

/sys/devices/system/cpu/vulnerabilities/spectre_v2:Mitigation: Full
generic retpoline, IBPB: conditional, IBRS_FW, STIBP: conditional,
RSB filling

