B

Performance Analysis and Tuning Red Hat
Enterprise Linux Part 1 (what’s new in RHELS)

D. John Shakshober
Sr Distinguished Eng
Tech Director RH Perf+Scale

Larry Woodman

Sr Distinguished Eng
R H Kernel Eng

8 May, 2019

Joe Mario
Sr Principal Perf+Scale Eng
Kernel, Network, low latency, perf tools

Sanjay Rao
Sr Principal Perf+Scale Eng
Database, 10 performance

Agenda: Performance Analysis Tuning Part |+lI

e RHEL Evolution 5->6->7-8 , What’s new for perf in RHELS!
e Tuned and Perf Lab results
e |0 and Network Improvements
e DiskIO
e Database / File system improvements w/ RHELS8
e RHEL Memory management
e 5 Level Page Tables
e NvDIMM arch and early certification / prelimin perf
e NonUniform Memory Access (NUMA)
e HugePages
e Partll Meet The Experts Room 150 - all above + additional topics
e Low Latency Network (cpu_partitioning tuned)
e XDP, eBPF, cgroup V2 (tech preview)
e Perftool, tuna, PCP copilot ... etc

RHEL Performance Engineering

RHEL Performance Evolution

RHELS

Static Hugepages

CPU Sets

Ktune on/off

CPU Affinity (taskset)
NUMA Pinning (humactl)

irgbalance

RHELG

Transparent Hugepages
Tuned - Choose Profile
NUMAD - userspace
cgroups

irgbalance - NUMA
enhanced

RHEL/

Tuned -
throughput-performance
(default)

Automatic
NUMA-balancing

Containers/OCI - CRI-O
(podman)

irgbalance - NUMA
enhanced

Red Hat Performance Engineering

RHELS

5 level PTEs
(THP cont)

Tuned: Throughput/
Lat - SSD/Nvdimm

Multi-Arch:
Intel/ AMD/
ARM/ Power

Networking:
XDP and eBPF

Acceleration
GPU/FPGA/Offloads

Q redhat.

RHEL tuned parameters that effect performance (syscts)

CPU Scheduler tunables

Throughput Performance

Scheduler quantum (default 4/10 ms,-> 10/15 ms)

® kernel.sched_min_granularity_ns=10000000

e Kkernel_sched_wakeup _granularity_ns = 15000000

Weight function on how often to migrate - 5ms -> 50ms

e Kkernel.sched_migration_cost_ns=50000000

Latency Performance tuning
e Decrease quantum above to 4 /10 ms
Adjust power management - BIOS OS controlled
e pstates - governor=performance
e energy_perf_bias=performance
e cstate - force latency=1
Disable scaning tools for better determinism
e Disable numa balance
o kernel.numa_balancing =0
e Disable Transparent HugePages
o mm.redhat_transparent_hugepage never

#redhat #rhsummit

VM Tunables

Reclaim Ratios

e vm.swappiness

e vm.vfs_cache pressure

e vm.min_free_kbytes
Writeback Parameters 30/10 -> 10/3

e vm.dirty _background_ratio

e vm.dirty ratio

Readahead parameters per device 512-> 4k
e /sys/block/<bdev>/queue/read_ahead_kb

Non-Uniform Memory Access (NUMA) Hugepages

Auto numa balancing at scheduling time
e kernel.numa_balancing = 1
e Adjust numa scan interval 1000 ms -> 100 ms

e vm.zone_reclaim_mode = 1 (reclaim local node vs spill)
Transparent HugePages

e mm.redhat_transparent_hugepage enabled

Q. redhat.

Tuned Profiles throughout Red Hat's Product Line

RHEL7/8 Laptop/Workstation RHEL7/8 Server/HPC
balanced throughput-performance
RHEL7/8 KVM Host, Guest RHV/OSP
virtual-host/guest virtual-host
Red Hat Storage RHEL OSP (compute node)
rhs-high-throughput Virtual-host/guest
Open Shift Platform NFV /RT

control-plane/node cpu_partitioning/rt

RHEL Performance Engineering

Tuned network-latency Profile

Parents
latency-performance
throughput-performance balanced latency-performance force_latency=1
governor=performance
I I I energy_perf_bias=performance
| | | min_perf_pct=100

Childten vm.dirty_ratio=10
vm.dirty_background_ratio=3

vm.swappiness=10
network-throughput desktop network-latency \ kernel.sched_min_granularity_ns=10000000
kernel.sched_migration_cost_ns=5000000
virtual-host

virtual-guest

network-latency
include=Ilatency-performance

transparent_hugepages=never

Children/Grandchildren net.core.busy_read=50
net.core.busy_poll=50

net.ipv4.tcp_fastopen=3
kernel.numa_balancing=0

RHELS8 Performance Lab Results

e Performance Testing at Red Hat
e CPU
e Intel - Haswell /Broadwells, SkyLakes, AMD EPYC, ARM
e Memory - virtual memory
e 512 Gb upto 24 TB (partner limits)
e Networks
e Intel, Mellanox, Solarflare 10, 25, 40, 100 Gb
e Disk/Filesystem IO
e xfs, ext4/3, gfs2, nfs, gluster, ceph

e Security - CVE impacts, Retpoline for all Intel

RHEL Performance Engineering

RHEL 8 vs RHEL 7 Workload Performance Gains

RHEL 8 vs RHEL7.6z Normalized performance gains

(Intel Skylalse 32-cpu, 384 GB mem, Intel 10Gb nic, Intel P100 NvME)
5

40
© 30
~
2
—
T
[10
o
3° 0 e —
CPU - Linpack, Streams, Memory - Java Disk 10 - FIO R/W @4k, Network Workloads Network Bypass
SPECcpu(est), BLAS (SPECjbb est), AIM Database OLTP, DSS uperf 1-8 threads DPDK, OpenOnload,
(shared), TCP/UDP, small-med, RDMA
XDP

RHEL Eerformance Engineering

RHEL 8 Performance of AIM7 w/ different loads

AIM7 XFS - multiuser, throughput in jobs/min (Bigger==Better)

AIM 7 Shared Throughput AIM'7 Dbase Throughput Aim 7 fserver Throughput
= RHEL76 = RHEL76 m FHEL7§
200000
400000 400000
0

% £ .“:-: 150000

£ = £

: £

g 8 2100000

2200000 3200000 9 [\/_/\,_/"\/\/_
50000

0 0
5000 10000 15000 20000 5000 10000 15000 20000 25000 5000 10000 15000 20000 25000
Load Load

RHEL Eerformance Engineering Y

RHEL 8 Performance improvements w/ AIM7

AIM7 Shared User Mix - multiuser benchmark, throughput in jobs/min +35.6%

RHEL 7.6, page fault stack not present. RHEL 7.6 vs RHEL 8 AIM7 Shared Throughput - XFS

raw_spin_unlock_irgrestore w= RHEL7.61.3 w= RHEL7.61.3RETP RHEL861 = RHELB61IBRS
_raw_spin_unlock_irgrestore 400000
__wake_up

xlog_state_do_callback

xlog_state_done_syncing
xlog_iodone 300000
xfs_buf ioend

Xfs_buf_ioend_work é e
RHEL 8 S 200000
filemap_map_pages+187 E
handle_pte_fault+2406 £
__handle_mm_fault+1066 100000
handle_mm_fault+218
__do_page_fault+586
do_page_fault+50 n
page_fault+30 - 2500 5000 7500 10000 12500 15000

Number of Tasks

RHEL Eerformance Engineering 10

RHEL 8 Performance BLAS w/ AVX”* Inst

Intel 2nd generation of Intel® Xeon® Scalable processors

[Cascade Lake] Peak Performance of OpenBLAS sgemm for Different
AV X* Instructions

2000
Matrix A = 16,000 x 16,000 —
Matrix B = 16,000 x 16,000 1834
@ a=1
B_- 1500 B=0
| .
L
L
O
] 1000
=
o
=
DL
| =
> 500
(4]
L
oo
0

No AVX AVX AVX2 AVX512

RHEL Eerformance Engineering 1

RHEL 8 Network Performance w/ uperf

Open Stack Control Plane Network Performance - 10 Gb Intel Nic

TCP STREAM 64B Packets TOP STREAM 10248 Packets TCP STREAM 16K Packets

[RHEL8Beta [RHELT6 [RHEL8Beta [RHELTS [RHEL8Beta [l RHELT6
08 1 10

0‘6 0 0
2 a a
a a
8 8 § 0 6
£ £ £
s 04 v s
: »
o 5 4 2
3 3 g
£ g £
Fo02 £
-) 2
0 0 .
WUAN Geere ORE VALAN Geneve ORE VXLAN Geneve GRE
Tunnel T
Tunnel Type Tunnel Type unnel Type

RHEL Performance Engineering 12

RHELS8 Tech Preview - XDP Performance

New Network Performance — TCP vs XDP vs DPDK in RHELS8 (2-20x gain)

RHEL Traffic-gen Intel Broadwell / XL710 - 40 40 Gb @ 64 Bytes

B RHEL7.5z Linux Bridge [RHEL8-XDP RHEL8-DPDK
40

30
20

10

Single-q Multi-g

Mpps 64 Byte 0% packet loss

RHEL 8 - Database tuning tips

e MariaDB

o Huge pages
m Reduce TLB misses
m For wiring down database pages
m Prevent swapping

o Lower dirty background ratio / Increase dirty ratio
m To start early reclaim of dirty blocks

o Size buffer pool based on user connections (or use connection pooling)
m To prevent memory pressure

e Postgres

o Use Huge pages
m Reduce TLB misses
m For wiring down database pages
m Prevent swapping

o Lower dirty background ratio / Increase dirty ratio
m To start early reclaim of dirty blocks

o Configure Shared buffers as well as effective cache size to avoid memory pressure

RHEL Eerformance Engineering

14

RHEL 8 Performance Open Source DBs

RHEL 8 vs RHEL 7 Skylake 64 cpu / 192G mem / NvME

Mariadb - 10.0.37.1 - HammerDB OLTP

H418.064-el18 W 3.10.0-957.el7

10 20 40 80 100

RHEL Eerformance Engineering 15

RHEL 8 Performance Open Source DBs

RHELS8 vs RHEL 7 - Skylake - 64 cpu / 129G mem / NvVME

postgresqll1-11.1-3 - HammerDB - OLTP

M 4.18.0-64.el8 W 3.10.0-957-el7

10 20 40 80 100

RHEL Eerformance Engineering 16

RHEL 8 - Database tuning tips

Oracle 12c

o Implement huge pages
m Reduce TLB misses
m For wiring down database pages
m Prevent swapping

o Turn off Auto numa
m To prevent conflict with Oracle NUMA optimization

o Turn of transparent huge pages
m Toreduce CPU overhead of THP scan

o Lower dirty background ratio
m Start flushing dirty blocks and reclaim

o Increase dirty ratio
m Delay the process of hitting dirty blocks threshold

o Use numa pinning in multiple instance environments (including listener process)
m To take advantage of NUMA localization

o Size SGA based on user connections (or use connection pooling)
m o prevent memory pressure

RHEL Eerformance Engineering

RHEL 8 Performance Legacy DB

RHEL 8 vs RHEL 7 Skylake 64 cpu / 192G mem / NvME

Oracle 12 - HammerDB OLTP - 128G SGA

W 4.18.0-64.¢l8 m 3.10.0-957.el7

10U 20U 40U 80U

RHEL Eerformance Engineering

18

New with SQL Server on Red Hat Enterprise Linux 8:
Increased Performance

e Updates to the mssql tuned profile optimize tuning for decision
support workloads

e New TCP/IP stack delivers increased performance and BBR
congestion control

e Storage block devices now use multiqueue scheduling to make
the best use of bandwidth available from modern flash-based
storage devices

e XFS FUA enhancements for SQL Server - write request |/O traffic
is reduced by ~50% for a SQL Server write-intensive workloads

Red Hat Summit 2019 B8 Microsoft Qredhat

https://blogs.msdn.microsoft.com/bobsql/2018/12/18/sql-server-on-linux-forced-unit-access-fua-internals/
https://blogs.msdn.microsoft.com/bobsql/2018/12/18/sql-server-on-linux-forced-unit-access-fua-internals/

RHEL 8 Performance DB Performance

RHELS DB Performance - MSSQL 2019

Skylake - 64 cpu, 192GB, NvME

m4.18.0-75.el18 m3.10.0-957.el7

RHEL Eerformance Engineering

RHEL 8 Performance Summary

Performance Highlights:
Microbenchmarks
Multig SCSI - direct attached and fiberchannel, iozone, fio
Network — Netperf/Uperf (TCP/UDP) - improved sm/med packet

AIM multiuser (shared, db, fileserver) - lower syscall overhead, VM changes.

CVE impacts, use retpoline for spectre Intel (on Skylake vs IBRS)
Databases — Oracle, MariaDB, Postgres, Mongo, SQLserver

Improvements in XFS journal / FUA opts

Virtual Memory (contention), algorithm for VM flushing dirty pages
Java — SPECjbb, MAX bops 2005 and 2015

SAP — ERP Sales and Distribution (SD bm) and Hana Analytics tpcds/bw loads
SAS — Mixed Analytics (scale up), SAS Grid (cluster)

RHEL Performance Engineering

21

Numa and Memory Perf Tuning

#redhat #rhsummit

Typical Four-Node NUMA System

Node 0 Node 2
Node 0 RAM Node 2 RAM
Core 0 Core 1 Core 0 Core 1
Core 2 L3 Cache Core 3 Core 2 L3 Cache Core 3
Core 4 Core 5 Core 4 Core 5
Core 6 Core 7 Core 6 Core 7
Core 8 Core 9 Core 8 Core 9
Core... Core...
QPI links, 10, etc. QPI links, 10, etc.
Node 1 Node 3
Node 1 RAM Node 3 RAM
Core 0 Core 1 Core 0 Core 1
Core 2 L3 Cache Core 3 Core 2 L3 Cache Core 3
Core 4 Core 5 Core 4 Core 5
Core 6 Core 7 Core 6 Core 7
Core 8 Core 9 Core 8 Core 9
Core... Core...

QPI links, 10, etc. QPI links, 10, etc.

Tools to display CPU and Memory (NUMA)

numactl --hardware

3 : odes (0-3)
node 0 cpus: 0 4 8 12 16 20 24 28 32 36
ize. 65415 MB

node 0 free:
node 1 cpus:
node 1 size:
node 1 free:
node 2 cpus:
node 2 size:
node 2 free:
node 3 cpus:
node 3 size:
node Tee.
node distances:
node 0 1
0: 10 21
1: 21 10
2: 21 21
3 21 21

63482 MB

2 6 10 14 18 22 26 30 34 38
65536 MB

63968 MB

150913 17 21 25 29 33 37

65536 MB

63897 MB

3 7 11 15 19 23 27 31 35 39
65536 MB

2 3
21 21
21 21 —
10 21
21 10

cpus & memory for each node

" Relative “node-to-node”

latency costs.

—

Visualize NUMA Topology: Istopo

NUMA Node 0

| NUMANode P#1 (64GB)

NUMA Node 1

I NUMANode P#0 (64GB)
Socket P#0 —D'— PCI 8086:1521 Socket P#1 PCI 1924:0803
| L3(20MB) | eml I L3(20M8) I plpl
| L2(256KB) | | L2(256KB) | l L2 (256KB) | | L2(256KB) | | L2(256KB) | | L2(256KB) | | L2 (256K8) | | L2(256KB) | | L2 (256KB) | | L2(256K8) | l L2(256KB) | | L2(256KB) | | L2 (256KB) | | L2(256KB) | | L2(256KB) | | L2 (256KB) |
[~ PCIB8086:1521 PCI 1924:0803
| L1d (32kB) | | L1d (32¢8) | l L1d (32KB) | | L1d (32KB) | | L1d (32kB) | | L1d (32¢8) | | L1d (32K8B) | | L1d (32KB) | E | L1d (32K8B) | | L1d (32KB) | I L1d (32k8B) | | L1d (32¢8) | | L1d (32KB) | | L1d (32kB) | | L1d (32¢8) | | L1d (32KB) I
| L1i(32k8) I | L1i(32B) | l L1i(32¢8) | I L1i(32k8) | | L1i(32B) l | L1i(32kB) | I L1i(32¢8) | | L1i(32kB) I L e I L1i(32¢8) | | L1i(32kB) I I L1i(32B) | | L1i(32kB) | I L1i(32¢8) | | L1i(32KB) I | L1i(32B) | | LLi(32¢8) |
Core P#0 Core P#1 Core P#2 Core P#3 Core P#4 Core P#5 Core P#6 Core P#7 E Core P#0 Core P#1 Core P#2 Core P#3 Core P#4 Core P#5. Core P#6 Core P#7
| PUP#0 I | PUP#2 | I PUP#4 | I PUP#6 I | PUP#8 I | PUP*10| I PUP#12| | PUP#MI I PUP#L | | PUP#3 I | PUP#5 I | PUP#7 | I PUP#9 | | PUP#llI | PUP#13| I PUF‘#15|
| PCI 8086:1521
{1 Pci 1000:005b H | H | t ' NUMA t | H
ow can | visualize my system's opology in
. Red Hat Enterprise Linux?
PCI Devices
https://access.redhat.com/site/solutions/62879
PCI 8086:10fb

02
L} L L i PCI102b:0534

PCI 8086:1d02

https://access.redhat.com/site/solutions/62879

Numactl

‘The numactl command can launch
commands with static NUMA
memory and execution thread

alignment
*# numactl -m <NODES> -N <NODES> <Workload>

‘Can specify devices of interest to
process instead of explicit node list
‘Numactl can interleave memory for
large monolithic workloads

*# numactl --interleave=all <Workload>

numactl -m 6-7 -N 6-7 numactl --show

policy: bind

preferred node: 6

physcpubind: 60 61 62 63 64 65 66 67 68697071 727374757677 7879
cpubind: 6 7

nodebind: 6 7

membind: 6 7

numactl -m netdev:ens6f2 -N netdev:ens6f2 numactl --show
policy: bind

preferred node: 2

physcpubind: 20 21 22 23 24 25 26 27 28 29

cpubind: 2

nodebind: 2

membind: 2

numactl -m file:/data -N file:/data numactl --show
policy: bind

preferred node: 0

physcpubind:0123456789

cpubind: 0

nodebind: 0

membind: 0

numactl --interleave=4-7 -N 4-7 numactl --show

policy: interleave

preferred node: 5 (interleave next)

interleavemask: 4 56 7

interleavenode: 5

physcpubind: 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
60 6162 63 64 6566 6768697071727374757677 7879

cpubind: 4567

nodebind: 456 7

membind: 01234567

numastat shows need for NUMA management

numastat -c gemu Per-node process memory usage (in Mbs)

PID Node 0 Node 1 Node 2 Node 3 Total
10722
10714

. sgunaligned

10730

Total 11462 11045 9672 10698 42877

numastat -c gemu
Per-node process memory usage (in Mbs)

PID Node 0 Node 1 Node 2 Node 3 Total

10728
0722

s aligned

Total 10733 10723 10740 10717 42913

NUMA Nodes and Zones

64-bit

Node 1

End of RAM

Normal Zone

Node O

Normal Zone

4GB DMA32 Zone
16MB DMA Zone

Per Node / Zone split LRU Paging Dynamics

User Allocations

Reactivate

fileLRU fileLRU

anon
ACTIVE INACTIVE FREE

Reclaiming

Page aging
swapout

flush

User deletions

Interaction between VM Tunables and NUMA

. Dependent on NUMA: Reclaim Ratios
./proc/sys/vm/swappiness
.Iproc/sys/ivm/min_free_kbytes

. Iproc/sys/ivm/zone_reclaim_mode

. Independent of NUMA: Reclaim Ratios
.Iproc/sys/vm/vfs_cache_pressure

. Writeback Parameters
.Iproc/sys/vm/dirty_background_ratio
.Iproc/sys/vm/dirty_ratio

. Readahead parameters
. Isys/block/<bdev>/queue/read_ahead kb

zone_reclaim_mode

‘Controls NUMA specific memory allocation policy

To see current setting: cat /proc/sys/vm/zone_reclaim_mode
echo 1 > /proc/sys/vm/zone_reclaim_mode
‘Reclaim memory from local node vs allocating from next node

##echo 0 > /proc/sys/vm/zone_reclaim_mode
- Allocate from all nodes before reclaiming memory

‘Default is set at boot time based on NUMA factor
‘In Red Hat Enterprise Linux 6.6+ and 7+,

‘Default is usually 0 — because this is better for many applications

#redhat #rhsummit

HugePages

Hugepages in RHEL

‘X86_64 supports 3 page sizes:
- 4KB, 2MB, 1GB
‘Standard HugePages 2MB
- Reservel/free via
. /proc/sys/vm/nr_hugepages
. /sys/devices/node/*
/hugepages/*/nrhugepages
- Used via hugetlbfs
-GB Hugepages 1GB
- Reserved at boot time/no freeing
- RHEL7&8 allows runtime allocation & freeing
- Used via hugetlbfs
- Transparent HugePages 2MB
- On by default via boot args or /sys
- Used for anonymous memory

#redhat #rhsummit

S

TLB

\\\\\\\\\\\\\\

Q redhat.

2MB standard and 1GB Hugepages

hugepagesz=1G, hugepagesz=1G, hugepages=8

echo 2000 > /proc/sys/vm/nr_hugepages

cat /proc/meminfo

MemTotal: 16331124
MemFree: 11788608
HugePages Total: 2000
HugePages Free: 2000
HugePages_Rsvd: 0
HugePages_ Surp: 0
Hugepagesize: 2048

./hugeshm 1000

cat /proc/meminfo

MemTotal: 16331124
MemFree: 11788608
HugePages Total: 2000
HugePages_ Free: 1000
HugePages Rsvd: 1000
HugePages_Surp: 0
Hugepagesize: 2048

#redhat #rhsummit

kB
kB

kB

kB
kB

kB

cat /proc/meminfo | grep HugePages

HugePages Total:
HugePages™Free:
HugePages Rsvd:
HugePages”Srp:

OO0

#mount -t hugetlbfs none /mnt

. /mmapwrite /mnt/junk
wrltlng 209715
wrote 8589934592 bytes t

cat /proc/meminfo |

HugePages
HugePages Total:
HugePages™Free:
HugePages Rsvd:
HugePages”Srp:

33
o file /%nt/junk

grep

OO0

2 pages of random junk to /mnt/junk

Q. redhat.

- Boot argument: transparent_hugepages=always (enabled by default)
#echo always > /sys/kernel/mm/redhat transparent hugepage/enabled

Transparent Hugepages

- Disable transparent hugepages
#echo never > /sys/kernel/mm/transparent hugepages=never

#time ./memorg 15 0
real Oml2.434s
user Om0.936s

sys Omll.416s

cat /proc/meminfo
MemTotal: 16331124 kB

AnonHugePages: 0 kB

#time ./memorg 15GB
real Om7.024s
user Om0.073s
sys Om6.847s

#cat /proc/meminfo
MemTotal: 16331124 kB

AnonHugePages: 15590528 kB

SPEEDUP 12.4/7.0 = 1.77x, 56%

#redhat #rhsummit

Q. redhat.

RHEL Disk I/O and I/O Elevators

#redhat #rhsummit

Tuning Memory — Flushing Caches

‘Drop unused Cache — to control pagecache dynamically
v Frees most pagecache memory
v File cache

/If the DB uses cache, may notice slowdown
‘NOTE: Use for benchmark environments.
.Free pagecache

» # sync; echo 1 > /proc/sys/vm/drop_caches
.Free slabcache

» # sync; echo 2 > /proc/sys/vm/drop_caches

.Free pagecache and slabcache
» # sync; echo 3 > /proc/sys/vm/drop_caches

#redhat #rhsummit ‘ rednat.

Per file system flush daemon

pagecache
Read()/Write()
- " Flush daemon
».| Pagecache -
memory copy page T~
- . S o
- . : -. J ‘_t
buffer -~ =
- -~ = -
| = b
User space
File system

#redhat #rhsummit

Kernel

Q. redhat.

Virtual Memory Manager (VM) Tunables

. Reclaim Ratios
./proc/sys/vm/swappiness
./proc/sys/vm/vfs_cache pressure
./proc/sys/vm/min_free kbytes

A Writeback Parameters
./proc/sys/vm/dirty _background_ratio
./proc/sys/vm/dirty ratio

A Readahead parameters
./sys/block/<bdev>/queue/read _ahead kb

#redhat #rhsummit ‘ redhat.

dirty_ratio and dirty_background_ratio

pagecache
100% of pagecache RAM dirty

If there is a lot of pagecache pressure one

flushd and write()'ng processes write dirty buffers would want to start background flushing
sooner and delay the synchronous writes.

This can be done by

dirty_ratio(20% of RAM dirty) — processes start synchronous . . .
writes . Lowering the dirty_background_ratio

flushd writes dirty buffers in background On very large memory systems, consider

dirty_background_ratio(10% of RAM dirty) — wakeup flushd using more granularity by using

. dirty_background_bytes

do_nothing dirty bytes

0% of pagecache RAM dirty

Tuning Memory — swappiness

. Not needed as much in RHEL7 & RHELS8

. Controls how aggressively the system reclaims “mapped” memory
. Default - 60%

. Decreasing: more aggressive reclaiming of unmapped pagecache
memory, thereby delaying swapping
. Increasing: more aggressive swapping of mapped memory

. Avoid swapping of database shared memory at all costs

Fibre Channel Storage
=y

OLTP Workload

77
77
76
81
82
81
79
79
76
61
77
54
80

OLTP Workload
PCI SSD Storage

#redhat #rhsummit

19

27
20
18
21

2
-

17

14

2
-

14
24

NAEHRWNOHFHWWHEWKHOUT

I/0 Tuning - Database layout — vmstat

swpd free buff cache si so | bi bo in

5092 44894312 130704 76267048 0 0 | 8530 144255 | 35350
5092 43670800 131216 77248544 0 0 | 6146 152650 | 29368
5092 42975532 131620 77808736 0 0 | 2973 147526 | 20886
5092 42555764 132012 78158840 0 0 | 2206 136012 | 19526
5092 42002368 132536 78647472 0 0 | 2466 144191 | 20255
5092 41469552 132944 79111672 0 0 | 2581 144470 | 21125
5092 40814696 133368 79699200 0 0 | 2608 151518 | 21967
5092 40046620 133804 80385232 0 0 | 2638 151933 | 23044
5092 39499580 134204 30894864 [¢] 0 | 2377 152805 | 23663
5092 38910024 134596 81436952 0 0 | 2278 152864 | 24944
5092 38313900 135032 81978544 0 0 | 2091 156207 | 24257
5092 37831076 135528 82389120 0 HE 133 155549 | 19798
5092 37430772 135936 82749040 0 @ | 1955 145791 | 19557
5092 36864500 136396 83297184 0 0 | 1546 141385 | 19957
swpd free buff cache si so bi bo in

6604 55179876 358888 66226960 (0] (0] 7325 26689570185
6604 50630092 359288 70476248 (0] 0 | 6873 306900 70166
6604 46031168 360132 74444776 (0] (0] 5818 574286|77388
6604 41510608 360512 78641480 (0] © | 4970 45293975322
6604 353588326 361012 84466256 0] 0 | 4011 441042 74022
6604 34991452 361892 84740008 0 0 | 2126 440876 73702
6604 34939792 362296 84747016 (0] 0 | 2323 40032473091
6604 34879644 362992 84754016 (0] (0] 2275 412631|73271
6604 34844616 363396 84760976 0 0 | 2275 41577773019
6604 34808680 363828 84768016 (0] 0 | 2209 401522|72367
6604 34781944 364180 84774992 0] 0 | 2172 40196673253
6604 34724948 364772 848032456 0] 0] 3031 421299|72990
6604 34701500 365500 84809072 0 0 | 2216 573246 76404

cs
113257
93373
66140
61452
63366
66029
69841
70294
72655
74231
72968
58195
56133
56894

cs
149686
149804
177454
1638464
162443
161618
161592
160766
158614
159100
155064
156224
175922

us sy

43
33
20
L7
19
22
23
24
25
27
26
20
18
19

NNNNNNNNNNONND WA

~

SNOO0O0OOOON NSNS N

id
45
53
65
69
67
65
64
64
62
61
62
67
66
67

id wa st

Ve REWUVEWEWVE

ol oNoNoNoNoloNoNoNoNoNol

wa st

11
13
12
ihel
Ll
11
10
10

9
10
11
14
13

(o]
OOOOOOOOOOOOOO

(ool oNoNoloNoNoNoNoNoNoNol

Memory Stats

/O Stats

CPU stats

Swap stats

Q. redhat.

Summary - RHEL Performance Tech/Tunables

- RHELG6/7/8
* Tuned - apply profiles for throughput (default) vs latency
m needed w/ more with advanced devices), per product (Open Shift
OCP, Realtime RT, NFV cpu-part) vendors, (sap, sqlserver).
m Adjust c-states, dirty-ratios, sched quantum/migration cost.
* NumaD/ AutoNUMA - With Red Hat Enterprise Linux
= AutoNUMA / NumaD can significantly improve performance for
server consolidation or replicated parallel workloads.
- HugePages wired-down, THP for vm’s containers, DB/Java 2MB or 1GB
- Tools - *stat, PCP, collectd, Perf (c-2-c), NUMAstat/ctl), tuna, pbench

tools to measure and/or fine control your application on RHEL.

‘Q+A at “Meet The Experts” - Room 150

RHEL tuned parameters that effect performance (syscts)

CPU Scheduler tunables

Throughput Performance

Scheduler quantum (default 4/10 ms,-> 10/15 ms)

® kernel.sched_min_granularity_ns=10000000

e Kkernel_sched_wakeup _granularity_ns = 15000000

Weight function on how often to migrate - 5ms -> 50ms

e Kkernel.sched_migration_cost_ns=50000000

Latency Performance tuning
e Decrease quantum above to 4 /10 ms
Adjust power management - BIOS OS controlled
e pstates - governor=performance
e energy_perf_bias=performance
e cstate - force latency=1
Disable scaning tools for better determinism
e Disable numa balance
o kernel.numa_balancing =0
e Disable Transparent HugePages
o mm.redhat_transparent_hugepage never

#redhat #rhsummit

VM Tunables

Reclaim Ratios

e vm.swappiness

e vm.vfs_cache pressure

e vm.min_free_kbytes
Writeback Parameters 30/10 -> 10/3

e vm.dirty _background_ratio

e vm.dirty ratio

Readahead parameters per device 512-> 4k
e /sys/block/<bdev>/queue/read_ahead_kb

Non-Uniform Memory Access (NUMA) Hugepages

Auto numa balancing at scheduling time
e kernel.numa_balancing = 1
e Adjust numa scan interval 1000 ms -> 100 ms

e vm.zone_reclaim_mode = 1 (reclaim local node vs spill)
Transparent HugePages

e mm.redhat_transparent_hugepage enabled

Q. redhat.

Red Hat Performance Whitepapers

. Red Hat Performance Tuning Guide

. Red Hat Low Latency Tuning Guide

. Red Hat Virtualization Tuning Guide
. RHEL Blog / Developer Blog

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html-single/Performance_Tuning_Guide/index.html
https://access.redhat.com/articles/1323793
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html-single/Virtualization_Tuning_and_Optimization_Guide/index.html
http://rhelblog.redhat.com/
http://developerblog.redhat.com/

New to RHELS:

X86_64 5-level page table/57-bit memory support
and
Persistent memory/NvDIMM support ¢

#redhat #rhsummit - rednat.

57 bit address space
5-level page tables

2756 2756

64PB 64PB

56 bit kernel address space

2764 -2"56 2764 - 2755 264

32PB/2"55(current HW limited to 4PB) 32PB/2"55

X86_64 5-level page table

5 level paging overview

55 42 47 19 1% 0 29 21 20 12 11 0
I A S I ML 4 I D rectory Per I 04 rexcza ry l Tl I Offaet I
4 .Krpte Page
Lu Payd cd Ackdr
9 g
| 3
L —_— PTE ._404
- POCwEh PS5 =0 l——s0
POPTE f—— -l
3 40
v P. T
g . FPage TOe
Page -Directory
P A ——————0— Linear-Address Translation Using 5-Level Paging
« CR3L5 2 ntains ph: 1 1dd r f PMLS tal
. nea 1dr bit 6:48 select an PMLSI
- PALSE P——————10

yen Source Technaology Center

Persistent Memory/NvDIMM Support in RHEL

Persistent memory is non-volatile memory NVDIMMs(aka NVRAM) that can be plugged into the DRAM slots.

- Can/will be VERY large(need 5-page table support)
) NVRAM can not be accessed via the PCl interface like SSDs.
) NVRAM is accessed via the memory bus, its in the physical address space just like RAM

° NVRAM is primarily used for storage but can be configured as RAM(systems with NVDIMMs must also have DRAM).
- Choosing if you want the NVDIMMs to be used as storage or RAM is controlled via BIOS settings.
- In storage mode the DRAM is the system memory and the NVRAM is the storage.

- In memory mode the NVDIMMs are the system memory and the DRAM is a cache for NVDIMMs.

° DAX — Direct Access File System: allows pages of NVRAM to be mapped directly in the pagecache.
- Eliminates multiple copies of data
- Reduces memory demand.

- Eliminates need for pagecache write-back operations needed for disks and SSDs.

NVRAM as the storage device

pagecache NVRAM storage

Read()/write()

Background 10

Buffer

User virtual address space

DAX uses NVRAM for pagecache

NVRAM pagecache

Read()/write()

Buffer

User virtual address space

DAX can map pagecache NVRAM into user buffer

NVRAM pagecache

mmap()’d

Buffer

User virtual address space

NVDIMM Memory mode

NVRAM is the system RAM

DRAM is used as a cache for the NVRAM.
- Adirect-mapped physical cache scheme is used in memory mode.
- A page coloring algorithm must be used to optimize the NVRAM cache.

- Memory references run at DRAM speed when working set is in DRAM cache
NVRAM is typically 4 to 16 times the size of the DRAM.
The DRAM speed and latency is orders of magnitude faster than the NVRAM.

Expect a memory bandwidth slowdown when DRAM is too small.

Memory mode NVDIMM support

DRAM cache

Banks of NVDIMM Memory

Part Il Meet the Experts - room 150

e Network Performance
o Low Latency
m Nohz_full
m Cpu_partitioning
a XDP + eBPF Denial of Service ®
e Perf Tools
o perf c-2-c
o tuna
e CVE impacts / tunable

#redhat #rhsummit

- redhat.

RHEL-7 nohz_full option

Patchset Goal:

Stop interrupting userspace tasks
Move timekeeping to non-latency-sensitive cores

If nr_running=1, then scheduler/tick can avoid that core
Default disabled

Opt-in via nohz_full cmdline option

Kernel Ticks for:
timekeeping (gettimeofday)
Scheduler load balancing
Memory statistics (vmstat)

RHELG Tickless

User tasks interupted 1000x/sec
Time (CONFIG_HZ=1000)

Tick Tick No Tick Tick Tick

RHEL 7 nohz_full
Time (CONFIG_HZ=1000)

No No No No No No
Tick Tick Tick Tick Tick Tick Tick T|ck

 AENRJER

Task is
lnterrupted - Userspace Task Tlmer Interrupt Tick

A

Isolcpus — the widely used “isolation” hammer.

A
0 |! 40 [:::]; 41 i| 2 [42| 3 | 43
N I b ~—— ...) I
—\ - ;o Yy P — |
4 44 .: 45 6 46 7 47
- /... &y _ . _. — ... — ...

Node 0

Boot with “isolcpus=1,5,9,13,17"
Pin your application’s individual threads to the isolated cores.
Life is good.

Isolcpus — no scheduler load balancing
Boot your system with “isolcpus=1,4,5,9,13,17"

Then run your multithreaded application:
taskset -c 1,4,5,9,13,17 my low _latency app

Result:
If you pin each thread to a cpu:
life is good.
Else
the entire application runs only on cpu 1.

“cpu-partitioning” tuned profile

For latency sensitive applications needing kernel scheduler load balancing.
Does all the “heavy lifting” for you.

1) Just edit /etc/tuned/cpu-partitioning-variables.conf
Isolated CPUs with kernel load balancing:
isolated_cores=10-39
Isolated CPUs without kernel load balancing:
no_balance_cores=2-9

1) Set the cpu-partitioning tuned profile.

tuned-adm profile cpu-partitioning

1) Then reboot!

Larry Woodman 0 redhat
Joe Mario i ’

Cpu-partitioning — after reboot you have:

. Adds the following to the kernel boot line:
skew_tick=1

nohz=on

nohz_full=2-39

rcu_nocbs=2-39
tuned.non_isolcpus=0000000003

intel _pstate=disable

Nosoftlockup

. Moves all users tasks off the isolated cpus
. Including all children of systemd (pid 1)

. All future processes too, as default system cpu affinity is changed.

Larry Woodman 0 redhat.
Joe Mario

CPU Partitioning tuned profile
Simple, flexible low-latency cpu isolation tuning.

Numa Node

Free non-isolated
SE0E006n <
] Oy

QEMU emulation process . .
P Need isolation

with
load balancing.

without
load balancing.

o Larry Woodman ‘ redhat.
Joe Mario .

Cpu-partitioning — after reboot (continued):

. kernel.hung_task_timeout_secs = 600

. kernel.nmi_watchdog = 0

. vm.stat_interval = 10

. kernel.timer_migration = 1

. net.core.busy read = 50

. net.core.busy poll = 50

. kernel.numa_balancing = 0

. kernel.sched_min_granularity_ns = 10000000
. vm.dirty_ratio = 10

. vm.dirty_background_ratio = 3

. vm.swappiness = 10

. kernel.sched_migration_cost_ns = 5000000
. Disables Transparent Hugepages

Larry Woodman 0 redhat.
Joe Mario

RHELS8 eBPF Tech preview Denial Of Service (DoS)

e The traffic flow is unidirectional from both interfaces.

e The packets are routed between the two DUT interfaces using kernel routing table and forwarded to
the other traffic generator port respectively.

e Abinary search is done to find the max packet rate till the test passes.

e The testis passed when:

o No TCP packet is received on both interfaces
o 0.002% of UDP packets drop threshold is maintained.

e |[ptables filter and drops TCP port 80 packets:
o Rules are added once in filter table and then in raw table for performance comparison
e For XDP, we are using xdp_ddos_blacklist[1] program which is loaded on both DUT interfaces and

drops packets arriving on TCP port 80.

[1]: https://qgithub.com/netoptimizer/prototype-kernel/blob/master/kernel/samples/bpf/xdp_ddos01_blacklist_kern.c

https://github.com/netoptimizer/prototype-kernel/blob/master/kernel/samples/bpf/xdp_ddos01_blacklist_kern.c
https://github.com/netoptimizer/prototype-kernel/blob/master/kernel/samples/bpf/xdp_ddos01_blacklist_kern.c

Test setup

NIC

NIC

Traffic Generator

(i

UDP TCP

] UDP
UDP!RI TCPIRI :

| NIC
I NIC

* (R): Reverse Direction

j UDP(R)

Network
Filter(iptables,
XDP)

j UDP

DROP

(M)dDL/doL

Device under test

DDoS scenario(Ratio of bad to good traffic is 9:1)

10 B Good traffic
B Bad traffic

Mpps(Million packets per second)

iptables iptables raw XDP

Network Filters

DDoS scenario(Single vs Multi Queue)

10 B Single queue
B Multi queue

Mpps(Million packets per second)

iptables iptables raw XDP

Network filters

perf c2c for cpu cacheline false sharing detection

Critical for:

« Shared memory applications
. Multi-threaded apps spanning multiple numa nodes

Shows everything needed to find false sharing:
« All readers and writers contending for hottest cachelines.
« The cpus and nodes they executed on.
« Process names, data addr, ip, pids, tids, src file and line number.
« Where hot variables are sharing cachelines, (like locks).
« Where hot structs are spanning cachelines, (like an unaligned mutex).

Detailed blog: https://joemario.github.io/blog/2016/09/01/c2¢c-blog/

Gets you contention like this:
. Can be quite painful

64 byte cache line

'mta

Node 0

CPU|CPU CPU|CPU |CPU
[Node 1

CPU|CPU CPU|CPU |CPU CPU|CPU|C
[Node 2

CPU|CPU CPU|CPU |CPU CPU|CPU|C
Node 3

CPU|CPU CPU|CPU |CPU CPU|CPU|CPU|...

A

offset

long b; offset 48

Where are my processes and threads running?
Two ways to see “where it last ran”.

1) ps -T -o pid,tid,psr,comm <pid>
-# ps -T -o pid,tid,psr,comm pidof pig’
PID TID PSR COMMAND
3175391 3175391 [3 pig
3175391 3175392 | 1 pig

3175391 3175393 25 pig "’Last Ran CPU” column
3175391 3175394 49 pig

2) Run “top”, then enter “f’, then select “Last used cpu” field

Are my threads and data aligned on same numa node?

Use pen‘ (soon to report node & phys addr info where data resides)
perf mem record -- --sample-cpu foo_exe
perf mem report -F mem,cpu,dcacheline,snoop,symbol -s dcacheline --stdio

Tuna: command line or gui

Fine grained process view & control
e Adjust scheduler tunables, (sched policy, RT priority and CPU affinity)
eSee results instantly
eTune threads and IRQ handlers.
elsolate CPU cores and sockets,

Examples:

Move an irq to cpu 5
tuna -c5 -q eth4-rx-4 —move

Move all irgs named “eth4*” away from numa node 1
tuna -S 1 -i -q ‘eth4™

Move all rcu kernel threads to cpus 1 and 3
tuna -c1,3 -t “rcu™ --move

Tuna example

-Kernel Monitoring

TJuna (on perfi30.perf.lab.eng.bos.redhat.com)

Monitoring ' Profile managementl Profile editing I

-Socket O -Socket 1 IRQ | Affinity I%Events - | Users
Filter ICPU IUsage Filter |CPU IUsage 73 19 217520363 |p4pl-4
o [o 1 0 69 |19 186348888 | papl-0
2 [o 3 96 75 |19 181906662 |p4pl-6
a [0 5 72 |19 149373275 |p4pl-3
6 [o 7 \ IEEE 76 |19 140617590 |p4apl-7
s [o 9 96 84 |19 133258975 |p4pl-15
10 [o 11 [Noo .93 |19 123895976 |p4pl-24
12 [lI55 13 [o i7s |19 120171430 |p4apl-9
14 [o 15 [ilE 79 |19 91062920 |p4pl-10
16 [O 17 S 71 |19 27435409 |papl-2
18 [O 19 [o 90 |19 25517561 |p4pl-21
20 [0 21 [o 81 |19 22664518 |papl-12
22 [0 23 [0 89 |19 21248928 |p4apl-20
24 [0 2s |8 85 |19 19996774 |papl-16
26 IT 27 IT b e] 10 1TnHho0n=2=21 nAnl O
IR I >
PID | Policy I Priority I Affinity | VolCtxtSwitch NonVolCtxtSwitch CGroup Command Line
437 OTHER (o} 0-27 2 (o} l:name=syster ata_sff
188533 OTHER (o} 0.2.4,6,8,10,12(119 8 l:name=syster -bash
189021 OTHER (o] 0.2.4,6,8,10,12|25 1 l:name=syster /bin/bash ./runAllMsgsS
180766 OTHER o 0-27 25 2 1l:name=syster /bin/bash ./runAliMsgS
189825 OTHER o} 0-27 34 1 l:name=syster /bin/bash ./frun_msg_si
189110 OTHER (o} 0.2.4,6,8.10,12 34 <L l:name=syster /bin/bash ./frun_msg_si

Monitoring Profile management%IProﬁle editingl

Tuna GUI Capabilities Updated for RHEL7

Current active tuna profile: example.conf I

ESave Snapshot |

E Save & Apply permanently

| Restore changes |

Apply changes

Kernel scheduler
kernel.core_pattern

kernel.sched_latency _ns

kernel.sched_min_granularity_ns

kernel.sched_nr_migrate

kernel.sched_rt_period_us

kernel.sched_rt_runtime_us
kernel.sched_tunable_scaling

kernel.sched_wakeup_granularity_ns I

Network IPva

ipvd.conf all.forwarding

ipv4.conf all.rp_filter

ipvd.tcp_congestion_control

Icore

24000000

\
10000000

]

| ey
32

] SE
1000000

| JE
1

950000

==

T

4000000

T |

Icubic

vM

vm.dirty_expire_centisecs

vm.dirty_ratio

vm.dirty_writeback_centisec:

vm.laptop_mode

vm.memory_ failure_early kil

vim.swappiness

Network IPv6

ipv6.conf all.forwarding
ipv6.conf default.forwarding
ipv6.conf.docker0.forwarding
ipv6.conf.eml.forwarding

ipv6.conf.em2.forwarding

76

CVE Performance overrides

To disable CVE on RHEL-{6,7,8}, add the following to the boot grub line
spectre_v2=off spec_store _bypass_disable=off nopti |1tf=off

Your resulting vulnerabilities files should then look something like these:

grep . /sys/devices/system/cpu/vulnerabilities/*
/sys/devices/system/cpu/vulnerabilities/I1tf:Mitigation: PTE Inversion;
VMX: vulnerable
/sys/devices/system/cpu/vulnerabilities/meltdown:Vulnerable
/sys/devices/system/cpu/vulnerabilities/spec_store bypass:Vulnerable
/sys/devices/system/cpu/vulnerabilities/spectre v1:Mitigation: _ user
pointer sanitization
/sys/devices/system/cpu/vulnerabilities/spectre_v2:Vulnerable, IBPB:
disabled, STIBP: disabled

Q. redhat.

CVE Performance Defaults w/ SkylLake

grep . /sys/devices/system/cpu/vulnerabilities/*
/sys/devices/system/cpu/vulnerabilities/lltf:Mitigation: PTE
Inversion; VMX: conditional cache flushes, SMT vulnerable

/sys/devices/system/cpu/vulnerabilities/meltdownMitigation: PTI

/sys/devices/system/cpu/vulnerabilities/spec store bypassMitigation:

Speculative Store Bypass disabled via prctl and seccomp

/sys/devices/system/cpu/vulnerabilities/spectre vliMitigation: user

pointer sanitization

/sys/devices/system/cpu/vulnerabilities/spectre v2Mitigation: Full
generic retpoline, IBPB: conditional, IBRS FW, STIBP: conditional,
RSB filling @ rednat

THANK YOU

E plus.google.com/+RedHat n facebook.com/redhatinc
n linkedin.com/company/red-hat u twitter.com/redhat

youtube.com/user/RedHatVideos

