
br.redhat.com

facebook.com/redhatinc
@redhat

linkedin.com/company/red-hat

RESUMO EXECUTIVO

Organizações no mundo todo estão adotando arquiteturas de aplicação baseadas em containers.
Como resultado, os desenvolvedores precisam ajustar as implementações de software existentes,
que passam da infraestrutura tradicional para o ambiente da plataforma de containers. Neste
whitepaper, abordamos cinco fatores essenciais na containerização de aplicações. Além
disso, apresentamos as estratégias de instrumentação correspondentes que tiram proveito de
tecnologias de container open source e nativas em alta no momento.

​CONFIGURAÇÕES EXTERIORIZADAS

Em geral, a entrega contínua nos ambientes de container parte do princípio de que a imagem do
container é um elemento imutável e garantido. Isso significa considerar que a mesma imagem
testada em um ambiente de controle de qualidade (QA) será implantada sem alterações no
próximo ambiente da sequência pipeline de integração e entrega contínuas (CI/CD). No entanto,
algumas configurações de aplicação variam entre os ambientes, e há uma boa razão para isso.
Alguns exemplos comuns de configurações de aplicação específicas do ambiente são as strings
de conexão do banco de dados externo, os endpoints da interface de programação de aplicações
(API) e os sinalizadores de alternância de recursos. Para preservar a imutabilidade do container,
é importante carregar a configuração específica do ambiente a partir de uma fonte externa.

Muitas vezes, as arquiteturas de software tradicionais usam uma técnica em que as aplicações
consomem os dados de configuração específicos para o ambiente, localizados em um sistema
de arquivos vinculado à máquina host. Essa abordagem parte do pressuposto de que uma
determinada aplicação é implantada em um host ou conjunto de hosts previsíveis.

Plataformas como Kubernetes e OpenShift usam um algoritmo de programação para avaliar
a infraestrutura disponível e atribuir de forma dinâmica os containers aos hosts no cluster. É
possível atribuir um container a qualquer nó do host que atenda aos critérios do algoritmo de
programação. Portanto, as informações de configuração da aplicação precisam estar disponíveis
em todos os pontos no cluster.

As abordagens modernas para o fornecimento de configuração de aplicações em um ambiente de
container compartilham do mesmo princípio básico: fornecer dados de configuração por meio de
um endpoint de serviço.

Um serviço de provedor de configuração para aplicações open source muito usado é o Spring
Cloud Config Server. Por padrão, esse serviço expõe um endpoint RESTful que retorna arquivos de
propriedade de configuração mantidos em um repositório Git. A comunidade do Spring também
fornece um cliente do lado da aplicação para recuperar informações de configuração. Ao usar
esses componentes, é possível definir uma aplicação Spring para consultar periodicamente o
serviço do provedor de configurações e recarregar o contexto se modificações forem detectadas.
Essa estratégia requer uma instância em execução do Spring Cloud Config Server e um
armazenamento de dados de configuração, como um repositório Git hospedado.

CINCO ESTRATÉGIAS DE
INSTRUMENTAÇÃO PARA ARQUITETAR
APLICAÇÕES EM CONTAINERS

David Gordon

WHITEPAPER

https://www.redhat.com/pt-br
http://facebook.com/redhatinc
https://twitter.com/redhat
https://www.linkedin.com/company/red-hat

2br.redhat.com WHITEPAPER  Cinco estratégias de instrumentação para arquitetar aplicações em containers

Uma abordagem alternativa é oferecida pela API do OpenShift: ela expõe um objeto ConfigMap, que
pode representar um arquivo, como por exemplo um arquivo de propriedade da aplicação, acessível
por qualquer pod autorizado no cluster. Com o cliente do Spring Cloud Config Kubernetes, as
aplicações Spring podem usar dados de configuração diretamente do ConfigMaps no ambiente de
execução. Portanto, mesmo sem um Spring Cloud Config Server em execução, a aplicação Spring
implantada no OpenShift usa a configuração de forma dinâmica. O cliente é compatível com o Red Hat®
JBoss® Fuse e foi desenvolvido de maneira upstream na comunidade do Fabric8.

​GERENCIAMENTO DE LOGS

Os logs da aplicação costumam ser gravados em arquivos em um disco. Novamente, o pressuposto
é de que o host da aplicação é predeterminado. Ao conhecer qual é o local de execução do processo
da aplicação, as equipes de operações sabem onde os registros serão gravados. Como os containers
são atribuídos dinamicamente aos nós ao serem implantados em plataformas como Kubernetes, uma
aplicação projetada para gravar logs no sistema de arquivos local não será eficiente. Os registros com
várias convenções de caminho, nome e formatação acabam ficando espalhados pela infraestrutura
do cluster. Além disso, o sistema de arquivos local do container geralmente segue o ciclo de vida do
próprio container. Quando o processo é eliminado, tudo o que está gravado no sistema de arquivos
local também é.

Em uma solução de gerenciamento de logs nativos do container, é necessária uma convenção de
destino e formatação que atue em todo o cluster. Isso pode ser alcançado ao delegar a tarefa para
a plataforma do container. Por exemplo: por padrão, o Docker coleta informações de erro e de saída
relacionadas a um processo principal do container e grava essas informações nos arquivos usando um
formato padronizado baseado em JSON. Esses arquivos estão localizados em /etc/docker e têm nomes
exclusivos que incluem a ID do container que produziu o log. Nesse caso, o impacto na implementação
da aplicação é sutil: todos os logs da aplicação são direcionados para a saída padrão. Estruturas como
o Logback, o autoproclamado sucessor do log4j, podem direcionar o log para uma saída padrão com
uma configuração simples. Desenvolva aplicações baseadas em container para que usem agentes de
estruturas configuráveis, como o Logback. Assim, é possível gerenciar com eficiência o destino de
saída e a formatação. A saída padrão (stdout) e o erro padrão (stderr) devem ser os únicos destinos da
geração de logs.

Além da organização dos logs do container, as equipes de operações precisam de uma estratégia para
pesquisar e coletar os logs em toda a infraestrutura da plataforma. Um stack de tecnologia popular
que fornece visualização, armazenamento e agregação de logs é o EFK (ElasticSearch, Fluent.d
e Kibana). Logs de container, assim como logs de componentes da plataforma, são coletados e
transmitidos para um armazenamento de dados distribuído. Os dados são apresentados com o Kibana,
que tem uma interface de usuário altamente configurável, com recursos que incluem a criação de
painéis e a investigação de comportamentos individuais do pod.

​RASTREAMENTO DISTRIBUÍDO

Com o rastreamento, é possível acompanhar uma transação à medida que ela se propaga em
um sistema distribuído. Assim, uma implementação de rastreamento deve ser capaz de unir as
informações sobre a transação, usando dados coletados a partir de diversos componentes do sistema.

Muitas vezes, as aplicações baseadas em container são implantadas como vários componentes que
funcionam juntos como um sistema. Já as aplicações que usam um conjunto de serviços modulares
e implantáveis separadamente na arquitetura seguem uma tendência chamada de microsserviços.
Seguir os rígidos padrões dos microsserviços ao desenvolver aplicações para implantação em
uma plataforma de container é totalmente opcional. No entanto, é importante lembrar que essas
aplicações costumam ser formadas por vários containers. O rastreamento de transações por meio de
uma arquitetura decomposta e/ou altamente distribuída é desafiador. Isso acontece porque as fontes
dos dados de rastreamento estão espalhadas em todo o pool de infraestrutura. Para resolver essa
questão, há diversas soluções open source para o rastreamento de sistemas distribuídos que estão
em alta no setor.

https://www.redhat.com/pt-br

3br.redhat.com WHITEPAPER  Cinco estratégias de instrumentação para arquitetar aplicações em containers

O Zipkin, por exemplo, é um sistema de rastreamento open source que foi muito adotado nos últimos
anos e tornou-se conhecido por ser parte do ecossistema de estrutura do Spring. Outras organizações,
como a Uber, desenvolveram novas implementações de ferramentas de rastreamento distribuído.

A OpenTracing Initiative foi fundada para criar um padrão de rastreamento independente de
fornecedor. O objetivo era resolver a questão de uma implementação de estrutura de rastreamento
que poderia resultar no acoplamento do sistema. As especificações e convenções semânticas descritas
pela OpenTracing Initiative são altamente inspiradas no Zipkin. Usado pela Uber, o Jaeger substitui
vários componentes do Zipkin e adere às convenções OpenTracing. Isso preserva a habilidade de
alternar entre implementações em conformidade com a OpenTracing de forma eficiente.

As soluções que estão em conformidade com os padrões OpenTracing viabilizam a flexibilidade de
arquitetura no futuro. Algumas das soluções mais eficazes e adotadas, como Zipkin e Jaeger, são
opções com disponibilidade imediata.

MÉTRICAS

Na coleta efetiva de métricas de aplicação em ambientes de container, há muitos dos mesmos desafios
descritos nas seções de registro e rastreamento. Devido à natureza temporária dos containers, os
endpoints de métricas não são estáticos. As instâncias de container acabam sendo substituídas por
outras mais modernas que podem ser inicializadas em um nó diferente no cluster. Plataformas como
Kubernetes e OpenShift usam uma abstração de rede chamada de serviço que define um conjunto
lógico de pods e uma política para acessá-los. No entanto, um serviço Kubernetes não fornece
um endpoint de monitoramento eficaz, porque são necessárias estatísticas mais granulares sobre
containers separados, em vez de agrupados.

Nessa área, o Prometheus é um kit de ferramentas open source para alerta e monitoramento muito
usado no contexto dos microsserviços. Ele inclui componentes para coletar e exibir métricas, além de
várias opções de bibliotecas de instrumentação, incluindo o exportador Java Management Extension
(JMX),

 que é o padrão para monitoramento de aplicações Java™. Com agentes de métricas como Jolokia
e Prometheus JMX Exporter, o usuário tem uma visualização agregada das métricas JMX de um
conjunto de containers por meio da API do Kubernetes.

É recomendável expor as métricas de todos os componentes da aplicação em um ambiente de
container. Use bibliotecas de instrumentação famosas para publicar endpoints de métricas que
estejam em conformidade com os formatos de exibição do Prometheus. Assim como no caso do
domínio de rastreamento distribuído, a tendência no monitoramento e nas métricas de aplicação
parece estar se voltando para adoção de uma especificação muito aceita, sendo o Prometheus o
padrão líder do setor no momento.

VERIFICAÇÕES DE INTEGRIDADE

A instrumentação de aplicações em containers com endpoints de verificação de integridade é crítica
nas arquiteturas de autocorreção. As aplicações implantadas na infraestrutura tradicional costumam
ter endereços de rede estáticos. Muitas vezes, o monitoramento tradicional de aplicações aproveita
a previsibilidade de um endpoint de host ou de serviço. Como os containers são programados para
execução dinâmica nos nós, os serviços de monitoramento de integridade precisam acompanhar todas
as instâncias deles.

O Kubernetes fornece um recurso que monitora automaticamente os endpoints de verificação de
integridade e que lida com os containers instáveis. Todos os containers no cluster são monitorados, e
o Kubernetes responde às verificações de integridade implantando, excluindo e reiniciando os pods. A
aplicação precisa expor uma API que monitore sua integridade, o que requer pouca instrumentação.

A instrumentação da verificação de integridade proporciona diversos níveis de eficácia. Por exemplo,
uma aplicação pode expor um controlador isolado que retorna um código de resposta HTTP 200 ao
ser chamado. Essa verificação de integridade é útil em muitos casos, mas é capaz de detectar apenas
determinados tipos de problemas. Se a conexão de uma aplicação com o banco de dados não for
íntegra, uma verificação superficial no endpoint provavelmente não detectará esse problema.

https://www.redhat.com/pt-br

Copyright © 2018 Red Hat, Inc. Red Hat, Red Hat Enterprise Linux, o logotipo Shadowman e JBoss são marcas registradas da
Red Hat, Inc. ou suas subsidiárias, nos Estados Unidos da América e em outros países. Linux® é uma marca registrada da Linus
Torvalds nos EUA e em outros países.

facebook.com/redhatinc
@redhat

linkedin.com/company/red-hat

SOBRE A RED HAT

A Red Hat é a líder mundial
no fornecimento de soluções

de software open source,
utilizando uma abordagem de
parceria com as comunidades

para oferecer tecnologias
confiáveis e de alto

desempenho de cloud, Linux,
middleware, armazenamento

e virtualização. A Red Hat
conta com premiados serviços

de suporte, treinamento e
consultoria. Como um hub
de conectividade em uma
rede global de empresas,
parceiros e comunidades

open source, a Red Hat ajuda
a criar tecnologias relevantes
e inovadoras que permitem a

ampliação recursos disponíveis
e preparam os clientes para o

futuro da TI.

Saiba mais em
http://www.redhat.com/pt-br

AMÉRICA LATINA
+54 11 4329 7300

latammktg@redhat.com

BRASIL
+55 11 3629 6000

marketing-br@redhat.com

br.redhat.com
#f11943_0418

As verificações de integridade mais eficazes fazem o inventário detalhado do status de todos os
componentes e conexões críticos para a aplicação. Nesse campo, o Spring Boot Actuator é uma
biblioteca de verificação de integridade popular que analisa os contextos das aplicações Spring e
apura o status do ambiente de execução de cada componente encontrado. Esse tipo de verificação
de integridade profunda viabilizada pelo Spring Boot Actuator é altamente recomendado para as
aplicações em containers.

RESUMO

A migração das aplicações tradicionais tentará acompanhar o ritmo cada vez mais acelerado da
adoção de containers. Ter em mãos um conjunto de ferramentas para solucionar as dificuldades
mais comuns da containerização significa otimizar a migração de aplicações legadas e o
desenvolvimento inovador, visando uma implementação adaptável e eficaz.

Em muitos casos, as implementações de aplicações são eficazes sem mudanças, com a
implantação em uma plataforma de container ou infraestrutura tradicional. No entanto, o que
possibilita o gerenciamento eficiente de aplicações formadas por muitos containers e implantadas
em um pool de infraestruturas são as tecnologias que expõem informações sobre ambientes de
execução e proporcionam a visualização e resposta a condições do ambiente.

Mais informações sobre as tecnologias de instrumentação descritas neste whitepaper estão
disponíveis através dos recursos a seguir:

•	Spring Cloud Config Kubernetes para a configuração exteriorizada de aplicações
(https://github.com/spring-cloud-incubator/spring-cloud-kubernetes)

•	Logback para o gerenciamento de logs de aplicações (https://logback.qos.ch)

•	Zipkin (https://zipkin.io) e Jaeger (http://jaegertracing.io) para rastreamento distribuído
usando o padrão OpenTracing (http://opentracing.io)

•	Prometheus (https://prometheus.io) como kit de ferramentas de métricas, incluindo o
Prometheus JMX Exporter (https://github.com/prometheus/jmx_exporter) para publicação

•	Spring Boot Actuator (https://spring.io/guides/gs/actuator-service) para expor endpoints de
verificação de integridade profunda

WHITEPAPER  Cinco estratégias de instrumentação para arquitetar aplicações em containers

http://facebook.com/redhatinc
https://twitter.com/redhat
https://www.linkedin.com/company/red-hat
http://www.redhat.com/pt-br
https://www.redhat.com/pt-br
https://github.com/spring-cloud-incubator/spring-cloud-kubernetes
https://logback.qos.ch
https://zipkin.io
http://jaegertracing.io
http://opentracing.io
https://prometheus.io
https://github.com/prometheus/jmx_exporter
https://spring.io/guides/gs/actuator-service

