facebook.com/redhatinc
@redhat
linkedin.com/company/red-hat

br.redhat.com

Q, redhat

WHITEPAPER

CINCO ESTRATEGIAS DE
INSTRUMFNTAC}AO PARA ARQUITETAR
APLICACOES EM CONTAINERS

David Gordon

RESUMO EXECUTIVO

Organizacdes no mundo todo estdo adotando arquiteturas de aplicacdo baseadas em containers.
Como resultado, os desenvolvedores precisam ajustar as implementagdes de software existentes,
gue passam da infraestrutura tradicional para o ambiente da plataforma de containers. Neste
whitepaper, abordamos cinco fatores essenciais na containerizacdo de aplicacGes. Além

disso, apresentamos as estratégias de instrumentagdo correspondentes que tiram proveito de
tecnologias de container open source e nativas em alta no momento.

CONFIGURACOES EXTERIORIZADAS

Em geral, a entrega continua nos ambientes de container parte do principio de que a imagem do
container é um elemento imutdvel e garantido. Isso significa considerar que a mesma imagem
testada em um ambiente de controle de qualidade (QA) serd implantada sem alteracdes no
préximo ambiente da sequéncia pipeline de integracdo e entrega continuas (CI/CD). No entanto,
algumas configuragOes de aplicacdo variam entre os ambientes, e hd uma boa razdo para isso.
Alguns exemplos comuns de configuragdes de aplicacdo especificas do ambiente sdo as strings
de conexdo do banco de dados externo, os endpoints da interface de programacdo de aplicagdes
(API) e os sinalizadores de alternancia de recursos. Para preservar a imutabilidade do container,
é importante carregar a configuracdo especifica do ambiente a partir de uma fonte externa.

Muitas vezes, as arquiteturas de software tradicionais usam uma técnica em que as aplicacGes
consomem os dados de configuracdo especificos para o ambiente, localizados em um sistema
de arquivos vinculado a maquina host. Essa abordagem parte do pressuposto de que uma
determinada aplicacdo é implantada em um host ou conjunto de hosts previsiveis.

Plataformas como Kubernetes e OpenShift usam um algoritmo de programacdo para avaliar
ainfraestrutura disponivel e atribuir de forma dinamica os containers aos hosts no cluster. E
possivel atribuir um container a qualquer né do host que atenda aos critérios do algoritmo de
programacdo. Portanto, as informacdes de configuragdo da aplicagdo precisam estar disponiveis
em todos os pontos no cluster.

As abordagens modernas para o fornecimento de configuracao de aplicacdes em um ambiente de
container compartilham do mesmo principio basico: fornecer dados de configuragdo por meio de
um endpoint de servico.

Um servico de provedor de configuracdo para aplicacdes open source muito usado é o Spring
Cloud Config Server. Por padrao, esse servico expde um endpoint RESTful que retorna arquivos de
propriedade de configuragdo mantidos em um repositério Git. A comunidade do Spring também
fornece um cliente do lado da aplicagdo para recuperar informacdes de configuragdo. Ao usar
esses componentes, é possivel definir uma aplicagcdo Spring para consultar periodicamente o
servico do provedor de configuracdes e recarregar o contexto se modifica¢cdes forem detectadas.
Essa estratégia requer uma instancia em execucdo do Spring Cloud Config Server e um
armazenamento de dados de configuragdo, como um repositério Git hospedado.


https://www.redhat.com/pt-br
http://facebook.com/redhatinc
https://twitter.com/redhat
https://www.linkedin.com/company/red-hat

br.redhat.com

Q redhat

Uma abordagem alternativa é oferecida pela API do OpenShift: ela expde um objeto ConfigMap, que
pode representar um arquivo, como por exemplo um arquivo de propriedade da aplicacdo, acessivel
por qualquer pod autorizado no cluster. Com o cliente do Spring Cloud Config Kubernetes, as
aplicacBes Spring podem usar dados de configuracdo diretamente do ConfigMaps no ambiente de
execucdo. Portanto, mesmo sem um Spring Cloud Config Server em execucao, a aplicacdo Spring
implantada no OpenShift usa a configuracdo de forma dinamica. O cliente é compativel com o Red Hat®
JBoss® Fuse e foi desenvolvido de maneira upstream na comunidade do Fabric8.

GERENCIAMENTO DE LOGS

Os logs da aplicagdo costumam ser gravados em arquivos em um disco. Novamente, o pressuposto

¢é de que o host da aplicacdo é predeterminado. Ao conhecer qual é o local de execucdo do processo
da aplicagdo, as equipes de operacdes sabem onde os registros serdo gravados. Como os containers
sdo atribuidos dinamicamente aos nds ao serem implantados em plataformas como Kubernetes, uma
aplicacdo projetada para gravar logs no sistema de arquivos local ndo sera eficiente. Os registros com
varias convencdes de caminho, nome e formatagdo acabam ficando espalhados pela infraestrutura
do cluster. Além disso, o sistema de arquivos local do container geralmente seque o ciclo de vida do
préprio container. Quando o processo é eliminado, tudo o que estd gravado no sistema de arquivos
local também é.

Em uma solucdo de gerenciamento de logs nativos do container, é necessdria uma convencdo de
destino e formatacdo que atue em todo o cluster. Isso pode ser alcancado ao delegar a tarefa para

a plataforma do container. Por exemplo: por padrdo, o Docker coleta informac&es de erro e de saida
relacionadas a um processo principal do container e grava essas informacdes nos arquivos usando um
formato padronizado baseado em JSON. Esses arquivos estdo localizados em /etc/docker e t&ém nomes
exclusivos que incluem a ID do container que produziu o log. Nesse caso, o impacto na implementacdo
da aplicagdo é sutil: todos os logs da aplicacdo sdo direcionados para a safda padrdo. Estruturas como
o Logback, o autoproclamado sucessor do log4j, podem direcionar o log para uma saida padrdo com
uma configuracao simples. Desenvolva aplicacdes baseadas em container para que usem agentes de
estruturas configuraveis, como o Logback. Assim, é possivel gerenciar com eficiéncia o destino de
saida e a formatacdo. A saida padrdo (stdout) e o erro padréo (stderr) devem ser os Unicos destinos da
geracgdo de logs.

Além da organizagdo dos logs do container, as equipes de operagdes precisam de uma estratégia para
pesquisar e coletar os logs em toda a infraestrutura da plataforma. Um stack de tecnologia popular
gue fornece visualizacdo, armazenamento e agregacdo de logs é o EFK (ElasticSearch, Fluent.d

e Kibana). Logs de container, assim como logs de componentes da plataforma, sdo coletados e
transmitidos para um armazenamento de dados distribuido. Os dados sdo apresentados com o Kibana,
gue tem uma interface de usudrio altamente configuravel, com recursos que incluem a criagdo de
painéis e a investigacdo de comportamentos individuais do pod.

RASTREAMENTO DISTRIBUIDO

Com o rastreamento, é possivel acompanhar uma transag¢do a medida que ela se propaga em
um sistema distribuido. Assim, uma implementacdo de rastreamento deve ser capaz de unir as
informacdes sobre a transagdo, usando dados coletados a partir de diversos componentes do sistema.

Muitas vezes, as aplicagdes baseadas em container sdo implantadas como vérios componentes que
funcionam juntos como um sistema. Ja as aplica¢des que usam um conjunto de servigos modulares

e implantdveis separadamente na arquitetura sequem uma tendéncia chamada de microsservicos.
Sequir os rigidos padrdes dos microsservicos ao desenvolver aplicacdes para implantacdo em

uma plataforma de container é totalmente opcional. No entanto, é importante lembrar que essas
aplicacdes costumam ser formadas por varios containers. O rastreamento de transagdes por meio de
uma arquitetura decomposta e/ou altamente distribuida é desafiador. Isso acontece porque as fontes
dos dados de rastreamento estdo espalhadas em todo o pool de infraestrutura. Para resolver essa
guestdo, hd diversas solucdes open source para o rastreamento de sistemas distribuidos que estao
em alta no setor.

WHITEPAPER Cinco estratégias de instrumentacdo para arquitetar aplicagdes em containers 2


https://www.redhat.com/pt-br

br.redhat.com

Q redhat

O Zipkin, por exemplo, é um sistema de rastreamento open source que foi muito adotado nos ultimos
anos e tornou-se conhecido por ser parte do ecossistema de estrutura do Spring. Outras organizacdes,
como a Uber, desenvolveram novas implementacées de ferramentas de rastreamento distribuido.

A OpenTracing Initiative foi fundada para criar um padrdo de rastreamento independente de
fornecedor. O objetivo era resolver a questdao de uma implementacdo de estrutura de rastreamento
gue poderia resultar no acoplamento do sistema. As especificagdes e convencdes semanticas descritas
pela OpenTracing Initiative sdo altamente inspiradas no Zipkin. Usado pela Uber, o Jaeger substitui
varios componentes do Zipkin e adere as convencdes OpenTracing. Isso preserva a habilidade de
alternar entre implementacdes em conformidade com a OpenTracing de forma eficiente.

As solucdes que estdao em conformidade com os padrdes OpenTracing viabilizam a flexibilidade de
arquitetura no futuro. Algumas das solucdes mais eficazes e adotadas, como Zipkin e Jaeger, sdo
opgbes com disponibilidade imediata.

METRICAS

Na coleta efetiva de métricas de aplicacdo em ambientes de container, hd muitos dos mesmos desafios
descritos nas secdes de registro e rastreamento. Devido a natureza tempordéria dos containers, os
endpoints de métricas ndo sdo estaticos. As instancias de container acabam sendo substituidas por
outras mais modernas que podem ser inicializadas em um n6 diferente no cluster. Plataformas como
Kubernetes e OpenShift usam uma abstracdo de rede chamada de servico que define um conjunto
l6gico de pods e uma politica para acessd-los. No entanto, um servico Kubernetes ndo fornece

um endpoint de monitoramento eficaz, porque sdo necessarias estatisticas mais granulares sobre
containers separados, em vez de agrupados.

Nessa drea, o Prometheus é um kit de ferramentas open source para alerta e monitoramento muito
usado no contexto dos microsservicos. Ele inclui componentes para coletar e exibir métricas, além de
vdrias opc¢des de bibliotecas de instrumentacdo, incluindo o exportador Java Management Extension
(UMX),

gue é o padrdo para monitoramento de aplicacdes Java™. Com agentes de métricas como Jolokia
e Prometheus JMX Exporter, o usudrio tem uma visualizacdo agregada das métricas JMX de um
conjunto de containers por meio da APl do Kubernetes.

E recomend4vel expor as métricas de todos os componentes da aplicacdo em um ambiente de
container. Use bibliotecas de instrumentacdo famosas para publicar endpoints de métricas que
estejam em conformidade com os formatos de exibi¢gdo do Prometheus. Assim como no caso do
dominio de rastreamento distribuido, a tendéncia no monitoramento e nas métricas de aplicacdo
parece estar se voltando para adocdo de uma especificacdo muito aceita, sendo o Prometheus o
padrdo lider do setor no momento.

VERIFICACOES DE INTEGRIDADE

A instrumentacdo de aplicacdes em containers com endpoints de verificacdo de integridade é critica
nas arquiteturas de autocorrecdo. As aplicacdes implantadas na infraestrutura tradicional costumam
ter enderecos de rede estaticos. Muitas vezes, o monitoramento tradicional de aplicaces aproveita

a previsibilidade de um endpoint de host ou de servigo. Como os containers sao programados para
execucdo dindmica nos nds, os servicos de monitoramento de integridade precisam acompanhar todas
as instancias deles.

O Kubernetes fornece um recurso que monitora automaticamente os endpoints de verificacdo de
integridade e que lida com os containers instdveis. Todos os containers no cluster sdo monitorados, e
o Kubernetes responde as verificagdes de integridade implantando, excluindo e reiniciando os pods. A
aplicagdo precisa expor uma API gue monitore sua integridade, o que requer pouca instrumentacdo.

A instrumentacdo da verificagdo de integridade proporciona diversos niveis de eficacia. Por exemplo,
uma aplicacdo pode expor um controlador isolado que retorna um cédigo de resposta HTTP 200 ao
ser chamado. Essa verificacdo de integridade é Util em muitos casos, mas é capaz de detectar apenas
determinados tipos de problemas. Se a conexdo de uma aplicagdo com o banco de dados nado for
integra, uma verificagdo superficial no endpoint provavelmente ndo detectard esse problema.

WHITEPAPER Cinco estratégias de instrumentacdo para arquitetar aplicagdes em containers 3


https://www.redhat.com/pt-br

SOBRE A RED HAT

A Red Hat é a lider mundial
no fornecimento de solucdes
de software open source,
utilizando uma abordagem de
parceria com as comunidades
para oferecer tecnologias
confidveis e de alto
desempenho de cloud, Linux,
middleware, armazenamento
e virtualizacdo. A Red Hat
conta com premiados servicos
de suporte, treinamento e
consultoria. Como um hub

de conectividade em uma
rede global de empresas,
parceiros e comunidades
open source, a Red Hat ajuda
a criar tecnologias relevantes
e inovadoras que permitem a
ampliacdo recursos disponiveis
e preparam os clientes para o
futuro da TI.

Saiba mais em
http://www.redhat.com/pt-br

AMERICA LATINA
+54 114329 7300
latammktg@redhat.com

BRASIL
+55 113629 6000
marketing-br@redhat.com

facebook.com/redhatinc
@redhat
linkedin.com/company/red-hat

br.redhat.com
#f11943_0418

Q redhat

WHITEPAPER Cinco estratégias de instrumentacdo para arquitetar aplicagdes em containers

As verificaces de integridade mais eficazes fazem o inventério detalhado do status de todos os
componentes e conexdes criticos para a aplicacdo. Nesse campo, o Spring Boot Actuator é uma
biblioteca de verificacdo de integridade popular que analisa os contextos das aplicacdes Spring e
apura o status do ambiente de execu¢do de cada componente encontrado. Esse tipo de verificacdo
de integridade profunda viabilizada pelo Spring Boot Actuator é altamente recomendado para as
aplicag6es em containers.

RESUMO

A migragdo das aplicagdes tradicionais tentard acompanhar o ritmo cada vez mais acelerado da
adocdo de containers. Ter em mdos um conjunto de ferramentas para solucionar as dificuldades
mais comuns da containerizacdo significa otimizar a migracdo de aplicacdes legadas e o
desenvolvimento inovador, visando uma implementacdo adaptavel e eficaz.

Em muitos casos, as implementacdes de aplicages sdo eficazes sem mudancgas, com a
implantacdo em uma plataforma de container ou infraestrutura tradicional. No entanto, o que
possibilita o gerenciamento eficiente de aplica¢des formadas por muitos containers e implantadas
em um pool de infraestruturas sdo as tecnologias que expdem informac¢des sobre ambientes de
execucdo e proporcionam a visualizacdo e resposta a condi¢cdes do ambiente.

Mais informacdes sobre as tecnologias de instrumentacdo descritas neste whitepaper estdo
disponiveis através dos recursos a sequir:

* Spring Cloud Config Kubernetes para a configuragdo exteriorizada de aplicagbes
(https://github.com/spring-cloud-incubator/spring-cloud-kubernetes)

¢ Logback para o gerenciamento de logs de aplica¢des (https://logback.gos.ch)

e Zipkin (https://zipkin.io) e Jaeger (http://jaegertracing.io) para rastreamento distribuido
usando o padrdo OpenTracing (http://opentracing.io)

¢ Prometheus (https://prometheus.io) como kit de ferramentas de métricas, incluindo o
Prometheus JMX Exporter (https://github.com/prometheus/jmx_exporter) para publicacdo

¢ Spring Boot Actuator (https://spring.io/guides/gs/actuator-service) para expor endpoints de
verificacdo de integridade profunda

Copyright © 2018 Red Hat, Inc. Red Hat, Red Hat Enterprise Linux, o logotipo Shadowman e JBoss sdo marcas registradas da
Red Hat, Inc. ou suas subsidiérias, nos Estados Unidos da América e em outros paises. Linux® é uma marca registrada da Linus
Torvalds nos EUA e em outros paises.


http://facebook.com/redhatinc
https://twitter.com/redhat
https://www.linkedin.com/company/red-hat
http://www.redhat.com/pt-br
https://www.redhat.com/pt-br
https://github.com/spring-cloud-incubator/spring-cloud-kubernetes
https://logback.qos.ch
https://zipkin.io
http://jaegertracing.io
http://opentracing.io
https://prometheus.io
https://github.com/prometheus/jmx_exporter
https://spring.io/guides/gs/actuator-service

