‘ RedHat

Detail

Definitive guide to Red Hat
OpenShift security

facebook.com/redhatinc
@RedHat
linkedin.com/company/red-hat

redhat.com

OpenShift Container Platform

Red Hat® OpenShift® Container Platform is a Kubernetes platform for operationalizing container
workloads remotely or as a hosted service. OpenShift Container Platform provides more consis-
tent security, built-in monitoring, centralized policy management, and compatibility with Kubernetes
workloads. The rapid adoption of open source projects can introduce vulnerabilities in standard
Kubernetes environments. OpenShift Container Platform supports these projects, allowing users to
gain open source advantages with a managed product’s stability and security. Red Hat OpenShift
offerings include five managed and two hosted options.

This guide will focus on the Red Hat OpenShift Container Platform 4.5, which is designed to be self-
managed within your infrastructure environment with various deployment options.

OpenShift architecture

OpenShift Container Platform is based on Kubernetes, and while Kubernetes provides container
orchestration capabilities, pod resiliency, services definitions, and deployment constructs, there are
many other components required to make it work. For example, Kubernetes does not provide default
container network interface (CNI) or default monitoring implementations. It is up to the cluster
administrator to bring additional tools to operate and manage the Kubernetes cluster and any appli-
cations running. For security teams, this presents new challenges—for example, these teams need to
create new policies and vet images, configurations, and account access for any new applications that
will be deployed into the cluster.

These additional, necessary operational capabilities are provided with OpenShift Container Platform
and are pluggable so that administrators can customize components and services to meet their infra-
structure needs.

OpenShift Container Platform’s architecture requires three different types of nodes within each
cluster to ensure highly available deployments.

Control plane nodes

These nodes run the core Kubernetes control plane functions and provide additional services such as
a self-service web console and developer- and operations-focused dashboards.

In most cloud environments, the control plane nodes are hidden from users and managed by provid-
ers for high availability, regular upgrades, and added security updates. With OpenShift Container
Platform, administrators manage, view, and interact with the control plane nodes directly, which


http://redhat.com
http://facebook.com/redhatinc
https://twitter.com/redhatnews
http://linkedin.com/company/red-hat

redhat.com

means that they need to set up their clusters for high availability and adequate security. To be compli-
ant with industry-standard best practices, a minimum of three control-plane nodes should be config-
ured to allow for accessibility to the control plane in a node outage event.

Infrastructure nodes

These are nodes dedicated to hosting additional functionality such as OpenShift routes and the
OpenShiftinternal registry. Infrastructure nodes host administrator and network-focused services
that are managed separately from your containerized applications.

App nodes or nodes

These are the OpenShift Container Platform nodes used to run your containerized applications.
These are similar to Kubernetes worker nodes and run various monitoring and networking services
required across a cluster.

Cluster design
Cloud IAM, accounts, and limits

When using a cloud provider, you will want to enforce tight identity and access management (IAM)
control of individual clusters and other cloud resources sharing a project. Limit access to resources
by applying the principle of least privilege. Understand each provider’s account roles and limitations
before setting up access to any OpenShift Container Platform clusters.

OpenShift Container Platform helps this process by providing in-depth documentation on the instal-
lation process, including installation in AWS, Azure, GCP, and IBM Z.

Private clusters

Strict network isolation, which prevents unauthorized external ingress to OpenShift cluster API
endpoints, nodes, or pod containers, comprises a critical piece of cluster security. By default,
OpenShift clusters have Kubernetes cluster APl endpoints and nodes with public IP addresses.

By default, OpenShift Container Platform is provisioned using publicly-accessible DNS and end-
points. The DNS, Ingress Controller, and APl server can be set to private after installing the cluster.
Additionally, OpenShift Container Platform may expose operations-focused dashboards for the
admins and developers. Ideally, these dashboards will be running on infrastructure nodes away from
your high-priority workloads.

The private cluster options vary based on the infrastructure environment. However, there are in-
depth guides for setting up a private cluster through various providers. OpenShift Container Platform
provides the installation methods and network setup options that are currently supported.

After creating your private cluster, you may need to perform extra configuration steps to ensure your
cluster’s components are correctly set. Also, upgrades to the cluster may require internet access and
extra considerations.

Setting up a bastion host

A bastion host provides access to a private network from an external network and is a simple way

to add an extra layer of security to your OpenShift cluster. A bastion host minimizes the chances of
unauthorized access to your OpenShift Container Platform cluster by allowing for more tightly tuned
access. Benefits of a bastion host include:

Detail Definitive guide to Red Hat OpenShift security 2


http://linkedin.com/company/red
https://docs.openshift.com/container-platform/4.5/networking/routes/route-configuration.html
https://docs.openshift.com/container-platform/4.5/registry/architecture-component-imageregistry.html
https://docs.openshift.com/container-platform/4.5/installing/installing_aws/installing-aws-account.html
https://docs.openshift.com/container-platform/4.5/installing/installing_azure/installing-azure-account.html
https://docs.openshift.com/container-platform/4.5/installing/installing_gcp/installing-gcp-account.html
https://docs.openshift.com/container-platform/4.5/installing/installing_ibm_z/installing-ibm-z.html
https://docs.openshift.com/container-platform/4.5/installing/install_config/installation-types.html
https://docs.openshift.com/container-platform/4.5/updating/updating-restricted-network-cluster.html
https://docs.openshift.com/container-platform/4.5/updating/updating-restricted-network-cluster.html

redhat.com

» Separate log-in accounts for everyone accessing the bastion host.
» Auditing of user access and time.

» Specific node access.

A bastion host is a useful way to augment security to your cluster. Restricting access to only specific
nodes through the cluster using the bastions .ssh/config allows for private network access and can
restrict users from tampering with nodes deemed off-limits.

Note: When using a cloud provider for deployment, use software-defined networks that are available.
The proper implementation of cloud IAM accounts, firewall rules, and private networking will signifi-
cantly reduce the attack surface.

VPC networks

When deploying your OpenShift cluster, you will want to take advantage of the various cloud pro-
viders' built-in networking and security protections. This will vary depending on the environment;
however, there are defaults and best practices to keep in mind during setup.

1. Create a single, virtual private cloud (VPC) network for each cluster and allow access accordingly.
2. Set up firewall rules to allow for only the ports required. These include:

a. AWS restricted network setup.

b. Azure private network setup.

c. GCP restricted network setups.

Securing etcd

By default, data stored in etcd is not encrypted at rest in OpenShift Container Platform. Etcd encryp-
tion can be enabled in the cluster to effectively provide an additional layer of data security and canto
debugin your cluster to help protect the loss of sensitive data if an etcd backup is exposed to incor-
rect parties. Because OpenShift Container Platform recommends an etcd backup during any upgrade,
encrypting etcd should be a standard practice in your organization.

When you enable etcd encryption, these server resources are encrypted:
» Secrets

» ConfigMaps

* Routes

» OAuth access tokens

» OAuth authorized tokens

When etcd encryption is enabled, encryption keys are created. These keys are rotated every week,
and the admin must have these keys to restore from an etcd backup.

Node images

Compromised nodes create a danger to your entire cluster and its workloads. Using minimal base
operating system (OS) images and configuring read-only file systems provides two critical ways to
protect your nodes against many attacks and limit their potential blast radius. With minimal images,

Detail Definitive guide to Red Hat OpenShift security 3


http://linkedin.com/company/red
https://docs.openshift.com/container-platform/4.5/updating/updating-cluster-between-minor.html
https://docs.openshift.com/container-platform/4.5/installing/installing_aws/installing-restricted-networks-aws.html
https://docs.openshift.com/container-platform/4.5/installing/installing_azure/installing-azure-private.html
https://docs.openshift.com/container-platform/4.5/installing/installing_gcp/installing-restricted-networks-gcp.html

redhat.com

attackers have limited tools to use, and if they cannot write or overwrite configuration files and
binaries on the node’s root file system, they cannot hijack the system as easily nor install their
malicious tools.

Providers are increasingly making available minimal, container-optimized OS images such as AWS
Bottlerocket and GCP's Container-Optimized OS (COS). However, it is best to leverage Red Hat
OpensShift's relationship with the cloud providers and use the most recent Red Hat Enterprise Linux®
CoreOS for all of your OpenShift Container Platform cluster’s nodes. Red Hat Enterprise Linux
CoreOS is the default operating system for all cluster machines; however, you can create worker
machines that use Red Hat Enterprise Linux as their operating system.

Red Hat Enterprise Linux CoreOS is designed to be as immutable as possible, allowing for only a few
system settings to be changed. These settings are configured remotely, with the help of a specific
operator developed by Red Hat OpenShift. This scenario means no user will need to access a node
directly, and any changes to the node will need to be directly authorized through the use of the

Red Hat machine operator.

CRI-O

Red Hat Enterprise Linux CoreOS also uses CRI-O as its default container runtime. CRI-O focuses
only on features needed by Kubernetes platforms. It also provides a smaller footprint and reduced
attack surface than is possible with container engines that include a superset of functionality beyond
Kubernetes-centric features. Because OpenShift Container Platform is based on Kubernetes, it ben-
efits from these features as well. By not including extra features for direct command-line use or
other orchestration facilities, CRI-O’s footprint is smaller, and therefore potential vulnerabilities

are reduced.

Authentication and authorization
Control access to cluster resources

In addition to using cloud provider IAM roles and authorization, the OpenShift Container Platform
control plane includes a builtin OAuth server. This server allows administrators to secure APl access
control via authentication and authorization regardless of the cluster’s deployment location. OAuth
2.0 is the industry-standard protocol for authorization, which works over HTTPS and authorizes
devices, servers, etc. with access tokens rather than credentials.

As an administrator, OAuth can be configured to authenticate using an identity provider, such as
LDAP, GitHub, or Google. Administrators can obtain OAuth access tokens to authenticate them-
selves to the APl as well. This feature can be enabled by cluster creation or after creation.

Manage APl access

Applications can have multiple, independent API services with different endpoints. Always aim

to restrict access to endpoints and services and only grant the minimal access required. In addition
to the OAuth server, OpenShift Container Platform includes a containerized version of its 3scale
API gateway.

Red Hat 3scale APl Management gives you a variety of standard options for APl authentication and
security, which can be used alone or in combination to issue credentials and control access: standard
APl keys, application ID and key pair, and OAuth 2.0. Using the 3scale APl gateway allows for fine-
grained control over authorization and exposure for the cluster’s APl services. For example, quotas
and throttling can minimize Denial-of-Service (DoS) attacks.

Detail Definitive guide to Red Hat OpenShift security 4


http://linkedin.com/company/red
https://www.redhat.com/en/technologies/jboss-middleware/3scale
https://www.redhat.com/en/technologies/jboss-middleware/3scale

redhat.com

Rotate cluster certificates

Kubernetes and OpenShift clusters rely on several secure certificate chains and credentials for secu-
rity. If sensitive keys or certificates are compromised, the integrity and safety of the entire cluster and
its workloads may be placed at risk. Additionally, many security policies and compliance certifications
require regular rotation of encryptions keys and credentials.

OpenShift Container Platform uses REST-based HTTPS communication with encryption via TLS
certificates. These certificates are configured during installation for the components that require
HTTPS traffic:

* APl server and controllers
* Etcd

* Nodes

* Registry

* Router

OpenShift Container Platform manages these certificates for the administrators and provides more
control, such as allowing administrators to rotate certificates manually.

Remove the kube-admin account

By default, a service account is mounted to every pod in an OpenShift Container Platform cluster,
allowing containers to send requests to the Kubernetes APl server. An attacker who gains access to
a pod can obtain the corresponding service account token. With role-based access control (RBAC)
enabled by default in an OpenShift Container Platform cluster service account, privileges are deter-
mined by role bindings. If these grant elevated privileges, an attacker could send a request to the
Kubernetes APl server to compromise cluster resources.

Organizations can mitigate this threat vector by configuring Kubernetes RBAC and adopting the least
privilege model for service accounts and their role bindings. A core example of this model is removing
the kube-admin user, with OpenShift Container Platform itself recommending its removal to improve
cluster security.

Networking

The concept of zero-trust security has emerged to address the new security challenges of cloud-
native architecture. These challenges include:

* The sharing of cloud infrastructure among workloads with different levels of trust.
* Smaller microservices increasing complexity and enlarging the attack surface of applications.

Microservice architecture creates a more extensive network attack surface. To address this issue,
administrators and developers will have to ensure both external networks and internal software-
defined networks are securely configured.

Securing service load balancers

OpenShift Container Platform, at a minimum, requires two load balancers: one to load balance the
control plane (the control plane APl endpoints) and one for the data plane (the application routers).
If aload balancer is created using a cloud provider, the load balancer will be internet-facing and may

Detail Definitive guide to Red Hat OpenShift security 5


http://linkedin.com/company/red
https://docs.openshift.com/container-platform/4.5/security/certificates/service-serving-certificate.html
https://docs.openshift.com/container-platform/4.5/authentication/remove-kubeadmin.html
https://docs.openshift.com/container-platform/4.5/authentication/remove-kubeadmin.html

redhat.com

have no firewall restrictions. In most on-premise deployments, appliance-based load balancers (such
as F5 or Netscaler) are used. Both types of load balancers will need to be configured by the admin-
istrator. If the load balancer needs to be internet-facing but should not be open to all IP addresses,
you can add the field loadBalancerSourceRanges to the service specification to limit the IP address
blocks allowed to connect. Verify that your load balancer supports this functionality.

Enable network policy

By default, network traffic in an OpenShift cluster is allowed between pods and can leave the cluster
network altogether. Creating restrictions to allow only necessary service-to-service and cluster
ingress and egress connections decrease the number of potential targets for malicious or misconfig-
ured pods and limit their ability to exploit the cluster resources.

The OpenShift Software Defined Network (OpenShift SDN) can control network traffic to and from
the cluster’s pods by implementing the standard Kubernetes Network Policy API. Network Policies
can control both ingress traffic and block or allow individual IP blocks. NetworkPolicy objects are
additive, which means you can combine multiple NetworkPolicy objects to satisfy complex network
requirements. Other container network interface (CNI) implementations allow for egress rules also to
be set. OpenShift SDN does not currently support that functionality.

All supported versions of OpenShift Container Platform come with Network Policies enabled by
default. However, the cluster will still allow for all pod traffic to be accepted. Make sure to deny all
traffic by default and create additive rules to limit pod traffic only to what is required. Test the policies
to make sure they block only unwanted traffic while allowing required traffic.

Master authorized networks

To protect against future vulnerabilities in the OpenShift API server and Kubernetes APl server, limit
network access to APl endpoints to trusted IP addresses. Regardless of the OpenShift Container
Platform clusters, administrators need to create rules for access to the cluster’'s APl endpoints.

Containerimages

Following a few best practices for building secure container images will minimize running containers’
exploitability and simplify security updates. Images that contain only the files required for the appli-
cation’s runtime make it much more difficult for attackers to compromise or exploit the containers
in your cluster. Avoid using container images with frequently exploited or vulnerable tools like Linux
package managers, web or other network clients, or UNIX shells.

What to do:
1. Use a minimal, secure base image.

2. Only install tools needed for the container’s application. Debugging tools should be omitted from
production containers.

3. Remove exploitable tools as part of the initialization process with init-containers.
4. Remove the package manager from the image as a Dockerfile build step.

5. Keep images up to date. This practice includes watching for new versions of both the base image
and any third-party tools you install.

6. Maintain compatibility with proper tags. Avoid the use of the “latest” tag to help downstream users
avoid compatibility issues.

Detail Definitive guide to Red Hat OpenShift security 6


http://linkedin.com/company/red
https://cloud.google.com/kubernetes-engine/docs/concepts/security-overview
https://kubernetes.io/docs/concepts/services-networking/network-policies/

redhat.com

Manage images with aregistry

OpenShift Container Platform offers an integrated image registry located on the infrastructure
nodes of the cluster. This setup allows an organization to avoid third-party hosting and public image
storing services, such as Docker Hub. By keeping all necessary images within the cluster, organiza-
tions can avoid dependency on a third-party service and any outages associated with them.

Organizations can enact more tuned policies for image use and vetting by taking advantage of a local
image repository. Only after an image has passed the proper controls should it be allowed to be used
to deploy containers into your cluster.

Use verified images from the container catalog

To help select secure base images, Red Hat offers a container image catalog. Images in the catalog
are maintained by Red Hat, meaning they are frequently scanned and updated. The container catalog
also provides animage’s history; every time it is updated, a new tag is created. According to a simple
scale A to F, the image is graded based on creation date and known security flaws.

Use animage scanner

Using containers free of known software security vulnerabilities requires ongoing vigilance. All the
images deployed to a cluster should be scanned regularly by an image scanner that keeps an up-to-
date database of CVEs (common vulnerabilities and exposures). Several open source and proprietary
options exist, but be sure to choose a solution that scans for vulnerabilities in operating system pack-
ages and in third-party runtime libraries for the programming languages your applications use.

To address CVEs when they are found in your internally maintained images, your organization should
have policies for updating and replacing images known to have serious, fixable vulnerabilities for
images that are already deployed. Image scanning should be part of your CI/CD pipeline process, and
images with high severity, fixable CVEs should generate an alert and fail a build.

OpenShift Container Security Operator

OpenShift Container Platform allows for a Container Security Operator (CSO) to be installed in the
cluster. This Operator will view results from the OpenShift Container Platform web console for con-
tainer images used to launch running pods in the cluster. The CSO can be directed to look at all pods
or specific namespaces. It will then query the container registry where the image came from for any
vulnerabilities. The Operator will also access vulnerabilities based on how long the container has been
used without an upgrade or patch.

The CSO's findings can be viewed through the OpenShift Container Platform dashboard that outlines
the cluster’s overall health and specific images that require attention.

Runtime security for workloads
Projects and namespaces

Kubernetes namespaces provide scoping for cluster objects, allowing fine-grained cluster object
management. Kubernetes role-based access control (RBAC) rules for most resource types apply
at the namespace level. Controls, like network policies and many add-on tools, and frameworks, like
service meshes, are also often scoped to the namespace level.

Detail Definitive guide to Red Hat OpenShift security 7


http://linkedin.com/company/red
https://access.redhat.com/documentation/en-us/red_hat_quay/3/html/manage_red_hat_quay/container-security-operator-setup

redhat.com

OpenShift expands on the Kubernetes namespace functionality with OpenShift projects. A project is
simply a Kubernetes namespace with additional annotations, and just like namespaces, users must be
granted access to create and use project resources.

Projects allow the user to add more metadata to a Kubernetes namespace and provide more context
in the OpenShift Container Platform web console. Projects can have a separate name, displayName,
and description, with displayName and description being option inputs to give a more specific name
and description in the web console.

When creating OpenShift projects, it is best to plan out how you will separate the projectsin the
cluster. Since RBAC and network policies integrate with the Kubernetes namespaces, it is essential to
evaluate how their implementation will affect your applications. To start, configuring one namespace
per application provides the best opportunity to implement excellent security protocols. The fine-
grained control using network policies and RBAC will add slightly more management and more secure
scalability. Also, avoid using the default namespace in any cluster outside of a development cluster.
All applications require their namespace and should not be deployed into default due to ease

of deployment.

Kubernetes RBAC

Kubernetes role-based access control provides the standard method for managing authorization for
the Kubernetes APl endpoints. The practice of creating and managing comprehensive RBAC roles
that follow the principle of least privilege and provide some of the most critical protections possible
for your OpenShift Container Platform clusters. By using a principle of least privilege and regular
audits, we can limit bad actors, internal misconfigurations, and accidents.

RBAC is enabled by default in OpenShift Container Platform clusters and includes the same set of
default cluster roles that can be found in Kubernetes clusters. Configuring RBAC effectively and
securely requires some understanding of the Kubernetes API. You can start with the official docu-
mentation, read about some best practices, and you can also find an in-depth explanation from the
Red Hat OpenShift documentation.

When working with OpenShift Container Platform, we want to create all necessary RBAC resource
objects for the cluster workloads and test them in a non-production environment. Once your team
has a solid working knowledge of RBAC, create some internal policies and guidelines. Make sure you
also regularly audit your role permissions and RoleBindings. Pay special attention to minimizing the
use of ClusterRoles and ClusterRoleBindings, as these apply globally across all namespaces and to
resources that do not support namespaces. (You can use the output of kubectl api-resources in your
cluster to see which resources are not namespace-scoped.)

Limit container runtime privileges

Most containerized applications will not need any special host privileges on the node to function
correctly. By following the principle of least privilege and minimizing your cluster’s running contain-
ers’ capabilities, you can significantly reduce the level of exploitation for malicious containers and of
accidental damage by misbehaving applications. With Kubernetes, the PodSpec Security Context is
used to define the exact runtime requirements for each workload. With Red Hat OpenShift Container
Platform, security context constraints (SCCs) are used to restrict privileges for pods. Similar to how
RBAC resources control user access, administrators can use SCCs to control permissions for pods.

Detail Definitive guide to Red Hat OpenShift security 8


http://redhat.com
https://docs.openshift.com/container-platform/4.5/authentication/using-rbac.html

redhat.com

SCCs are OpenShift resources; they define a set of conditions (or rules) that a pod must satisfy to be
created (or admitted in the cluster). These controls can limit the resources, system calls, and filesys-
tem access of the pods running in the cluster. Using SCCs, the level of privileges are controlled for the
application, and if needed, give them more permissive or more restrictive privileges.

Red Hat outlines the capabilities of SCCs in their documentation:
* Whether a pod can run privileged containers.

» The capabilities that a container can request.

» The use of host directories as volumes.

» The SELinux context of the container.

* The container user ID.

* The use of host namespaces and networking.

* The allocation of an FSGroup that owns the pod's volumes.

» The configuration of allowable supplemental groups.

* Whether a container requires the use of a read-only root file system.
* The usage of volume types.

» The configuration of allowable seccomp profiles.

By default, for authenticated users, resources deployed in a project inherit a default security context
associated with the authenticated users role. An OpenShift cluster contains eight default SCCs that
can be applied to authenticated users:

* anyuid
* hostaccess
* hostmount-anyuid

« Hostnetwork

node-exporter

non-root

privileged

restricted

Make sure not to tamper with these default SCCs because they are used for essential cluster func-
tions. Instead, create new SCCs for specific users and limit their capabilities.

Some guidelines when creating new SCCs include:

1. Do not allow containers to run as root. Running as root creates the most significant risk since root
access in a container is equal to root access on the underlying node.

2. Do not use the host network or process space. Again, these settings create the potential for com-
promising the node and every container running on it.

Detail Definitive guide to Red Hat OpenShift security 9


http://redhat.com
https://docs.openshift.com/container-platform/4.5/authentication/managing-security-context-constraints.html

redhat.com

3. Do not allow privilege escalation.
4. Use aread-only root filesystem in the container.
5. Use the default (masked) /proc filesystem mount.

6. Drop unused Linux capabilities and do not add optional capabilities that your application does not
require. (Available capabilities depend on the container runtime in use on the nodes.)

7. Use SELinux options for more fine-grained process controls.

8. Give each application its own Kubernetes service account rather than sharing or using the
namespace’s default service account.

9. Do not mount the service account token in a container if it does not need to access the
Kubernetes API.

Monitoring and maintenance
Cluster upgrades
Support policy:

Keeping up to date with patches for your cluster’s OpenShift Container Platform version is an impor-
tant requirement for your cluster and workload security. OpenShift Container Platform provides full
support of the newest released versions until a month after the newest version is released. OpenShift
Container Platform will support the maintenance of the three most-recent, minor releases.

Release channels:

OpenShift Container Platform 4.5 offers the following upgrade channels:
» Candidate-4.5

» Fast-4.5

» Stable-4.5

The candidate-4.5 channel contains candidate builds for a z-stream (4.5.z) release. Release candi-
dates contain all the features of the product but are not supported. Use release candidate versions
to test feature acceptance and assist in qualifying the next OpenShift Container Platform version.
The fast-4.5 channel is updated with new 4.5 versions as soon as Red Hat declares the given version
as a general availability release. These releases are fully supported, production quality, and have
performed well while available as a release candidate in the candidate-4.5 channel from where they
were promoted.

While the fast-4.5 channel contains releases as soon as their errata are published, releases are added
to the stable-4.5 channel after a delay. Data is collected from Red Hat site reliability engineering
(SRE) teams, Red Hat-support services, and pre-production and production environments that par-
ticipate in a connected customer program about the release’s stability during this delay. You can use
the stable-4.5 channel to upgrade from a previous minor version of OpenShift Container Platform.

Detail Definitive guide to Red Hat OpenShift security 10


http://redhat.com

facebook.com/redhatinc
@RedHat
linkedin.com/company/red-hat

redhat.com
#F28110_0421

Detail

Upgrade recommendations

OpensShift Container Platform allows for multiple ways of upgrading a cluster. A minor upgrade
can be made through the web console or through the command-line interface. Updating a
restricted cluster will need to be done via the command line and will require administrative control
and internet access to pull the most recent OpenShift images.

Regardless of the method chosen, make sure to have a recent etcd backup in case of a failed
upgrade. Also, ensure all Operators are upgraded to the latest version on their channel. This will
ensure that the Operators will be valid for the upgraded cluster.

Audit logging

Logging events and changes at both the OpenShift level and the node level create a critical audit
trail to use for evaluating your cluster’s security, especially in case of a breach or attack. Audit
logs are available by default and can be easily accessed through the command line. This is vital for
restricted clusters that are not using the web interface to view cluster logs.

OpenShift Container Platform allows administrators to view audit logs from the node and API
directly from the command line. OpenShift Container Platform uses Elasticsearch and Fluentd
for logging and storing your cluster events. Make sure to take advantage of these managed open
source tools to debug in your cluster effectively.

Further reading: Implementing Kubernetes-native security with Red Hat

Security platforms purpose-built to protect Kubernetes offer powerful security and operational
advantages. Kubernetes-native security applies controls at the Kubernetes layer, ensuring consis-
tency, automation, and scale. Organizations successfully deploy security as code, enabling secu-
rity that's built in, not bolted on.

Read this Kubernetes-native security: What is it and why it matters whitepaper to learn about
the key features and benefits of Kubernetes-native security and how it is different from
existing container security approaches to deliver protections that are purpose-built for
Kubernetes environments.

About Red Hat

Red Hat is the world's leading provider of open source software solutions, using a community-

powered approach to provide reliable and high-performing cloud, Linux, middleware, storage, and
virtualization technologies. Red Hat also offers award-winning support, training, and consulting services. As
a connective hub in a global network of enterprises, partners, and open source communities, Red Hat helps
create relevant, innovative technologies that liberate resources for growth and prepare customers for the
future of IT.

NORTH AMERICA EUROPE, MIDDLE EAST, ASIA PACIFIC LATIN AMERICA
1888 REDHAT1 AND AFRICA +656490 4200 +54114329 7300
00800 7334 2835 apac@redhat.com info-latam@redhat.com

europe@redhat.com

Copyright © 2021 Red Hat, Inc. Red Hat, the Red Hat logo, and OpenShift are trademarks or registered trademarks of Red Hat, Inc. or its
subsidiaries in the United States and other countries. Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.


mailto:europe@redhat.com
mailto:apac@redhat.com
mailto:info-latam@redhat.com
http://facebook.com/redhatinc
https://twitter.com/redhatnews
https://www.linkedin.com/company/red-hat
https://docs.openshift.com/container-platform/4.5/security/audit-log-view.html
https://www.redhat.com/en/resources/kubernetes-native-security-whitepaper

