
redhat.com

facebook.com/redhatinc
@RedHat

linkedin.com/company/red-hat

Detail A layered approach to container and Kubernetes security

Table of contents

	Introduction.. 2

	Comprehensive container and Kubernetes security: Layers and life cycle................................ 2

	Build security into your applications... 4

	Deploy: Managing the configuration, security, and compliance of your deployment............. 8

	Protect running applications... 11

	Extending security with a robust ecosystem...15

	Conclusion...15

Securing containers from build to deploy to run

A layered approach to container
and Kubernetes security

http://redhat.com
http://facebook.com/redhatinc
https://twitter.com/redhatnews
http://linkedin.com/company/red-hat

2redhat.com Detail A layered approach to container and Kubernetes security

Introduction

Containers have garnered broad appeal through their ability to package an application and its
dependencies into a single image that can be promoted from development, to test, and to pro-
duction. Containers make it easy to ensure consistency across environments and across multiple
deployment targets like physical servers, virtual machines (VMs), and private or public clouds. With
containers, teams can more easily develop and manage the applications that deliver business agility.

	� Applications: Containers make it easier for developers to build and promote an application and
its dependencies as a unit. Containers can be deployed in seconds. In a containerized environment,
the software build process is the stage in the life cycle where application code is integrated with
needed runtime libraries.

	� Infrastructure: Containers represent sandboxed application processes on a shared Linux®
operating system (OS) kernel. They are more compact, lighter, and less complex than virtual
machines and are portable across different environments—from on-premises to public cloud platforms.

Kubernetes is the container orchestration platform of choice for the enterprise. With many organiza-
tions now running essential services on containers, ensuring container security has never been more
critical. This paper describes the key elements of security for containerized applications.

Comprehensive container and Kubernetes security: Layers and life cycle

Securing containers is a lot like securing any running Linux process. You need to think about security
throughout the layers of the solution stack before you deploy and run your container. You also need
to think about security throughout the application and container life cycle. Importantly, security must
be a continuous process that is integrated throughout the IT life cycle as well, extending to respond
to new threats and solutions as they emerge. Figure 1 illustrates a comprehensive approach to
container security.

Container images

Private registry

Build management

CI/CD pipeline

Kubernetes platform life-cycle

Identity and access management

Platform data

Deployment policies

Container isolation

Network isolation

Application access and data

Observability

Build Deploy Run

Development Production

Figure 1. Comprehensive container security involves securing the build, deployment, and runtime, and extending
security with specialized tools when appropriate.

http://linkedin.com/company/red

3redhat.com Detail A layered approach to container and Kubernetes security

Containers make it easier for developers to build and promote an application and its dependencies
as a unit. Containers also make it easy to get the most use of your servers by allowing for multiten-
ant application deployments on a shared host. You can easily deploy multiple applications on a single
host, spinning up and shutting down individual containers as needed. Unlike traditional virtualization,
you do not need a hypervisor to manage guest operating systems on each VM. Containers virtualize
your application processes, not your hardware.

Of course, applications are rarely delivered in a single container. Even simple applications typically
have a frontend, a backend, and a database. And deploying modern microservices-based applica-
tions in containers means deploying multiple containers—sometimes on the same host and some-
times distributed across multiple hosts or nodes as shown in Figure 2.

Originating
banks

ACH Operator
Federal
Reserve

Receiving
banks

Merchant Payment processor

Object storage
bucket

Bucket
notification

Bucket
notification

Bucket
notification

OpenShiftCeph Storage AMQ Streams OpenShift
Serverless

Figure 2. Container environments can be complex and distributed across multiple nodes.

When managing container deployment at scale, you need to consider:

	� Which containers should be deployed to which hosts?

	� Which host has more capacity?

	� Which containers need access to each other and how will they discover each other?

	� How do you control access to and management of shared resources such as network and storage?

	� How do you monitor container health?

	� How do you automatically scale application capacity to meet demand?

	� How do you enable developer self-service while also meeting security requirements?

http://linkedin.com/company/red

4redhat.com Detail A layered approach to container and Kubernetes security

You can build your own container management environment, which requires spending time integrat-
ing and managing individual components. Or you can deploy a container platform with built-in man-
agement and security features. This approach lets your team focus their energies on building the
applications that provide business value rather than reinventing infrastructure.

Red Hat® OpenShift® delivers a consistent hybrid cloud enterprise Kubernetes platform for build-
ing and scaling containerized applications. Organization-wide use of Kubernetes requires additional
security capabilities that help you build security into your applications, automate policies that let you
manage container deployment security, and capabilities to protect the
container runtime.

Build security into your applications

Building security into your applications is critical for cloud-native deployments. Securing your con-
tainerized applications requires that you:

1.	 Use trusted container content.

2.	 Use an enterprise container registry.

3.	 Control and automate building containers.

4.	 Integrate security into the application pipeline.

1. Use trusted container content

When managing security, what is inside your container matters. For some time now, applications and
infrastructures have been composed from readily available components. Many of these are open
source packages, such as the Linux OS, Apache Web Server, Red Hat JBoss® Enterprise Application
Platform, PostgreSQL, and Node.js. Containerized versions of these packages are also available so
you can avoid building your own. However, as with any code you download from an external source,
you need to know where the packages originated, who built them, and whether they contain any
malicious code. Ask yourself:

	� Will the container contents compromise my infrastructure?

	� Are there known vulnerabilities in the application layer?

	� Are the runtime and OS layers in the container up to date?

	� How frequently will the container be updated and how will I know when it is updated?

Red Hat has been packaging and delivering trusted Linux content for years in Red Hat Enterprise
Linux and across our portfolio. Red Hat is now delivering that same trusted content packaged as
Linux containers. With the introduction of Red Hat Universal Base Images, you can take advantage
of the greater reliability, security, and performance of Red Hat container images wherever Open
Container Initiative (OCI)-compliant Linux containers run. This means you can build a containerized
application on Red Hat Universal Base Image, push it to the container registry of your choice, and
share it.

Red Hat also provides a large number of certified images and operators for various language run-
times, middleware, databases, and more via the Red Hat Ecosystem Catalog. Red Hat certified con-
tainers and operators run anywhere Red Hat Enterprise Linux runs, from bare metal to VMs to cloud,
and are supported by Red Hat and our partners.

http://linkedin.com/company/red
https://catalog.redhat.com/

5redhat.com Detail A layered approach to container and Kubernetes security

Red Hat continuously monitors the health of the images it delivers. The Container Health Index
exposes the “grade” of each container image, detailing how container images should be curated,
consumed, and evaluated to meet the needs of production systems. Containers are graded based
in part on the age and impact of unapplied security errata to all components of a container,
providing an aggregate rating of container safety that can be understood by security experts
and nonexperts alike.

When Red Hat releases security updates—such as fixes to runc CVE-2019-5736, MDS CVE-2019-
11091, or VHOST-NET CVE-2019-14835—we also rebuild our container images and push them to the
public registry. Red Hat security advisories alert you to any newly discovered issues in certified con-
tainer images and direct you to the updated image so that you can, in turn, update any applications
that use the image.

There may be times when you need content that Red Hat does not provide. We recommend using
container scanning tools that use continuously updated vulnerability databases to be sure you always
have the latest information on known vulnerabilities when using container images from other sources.
Because the list of known vulnerabilities is constantly evolving, you need to check the contents of
your container images when you first download them and continue to track vulnerability status over
time for all your approved and deployed images, just as Red Hat does for Red Hat container images.

2. Use an enterprise container registry for more secure access to container images

Of course, your teams are building containers that layer content on top of the public container
images you download. You need to manage access to, and promotion of, the downloaded container
images and the internally built images the same way you manage other types of binaries. There are
a number of private registries that support storage of container images. We recommend selecting
a private registry that helps you automate policies for the use of container images stored in
the registry.

Red Hat OpenShift includes a private registry that provides basic functionality to manage your
container images. The Red Hat OpenShift registry provides role-based access control (RBAC) that
allows you to manage who can pull and push specific container images. Red Hat OpenShift also sup-
ports integration with other private registries you may already be using, such as JFrog’s Artifactory
and Sonatype Nexus.

Red Hat Quay is available as a standalone enterprise registry. Red Hat Quay offers many additional
enterprise features such as geographic replication and build image triggers.

The Clair project is an open source engine that powers the Red Hat Quay security scanner to detect
vulnerabilities in all images within Red Hat Quay. Red Hat OpenShift Container Security Operator
integrates with Red Hat Quay to provide a cluster-wide view of known vulnerabilities for your
deployed images in the OpenShift console.

3. Control and automate building container images

Managing this build process is key to securing the software stack. Adhering to a “build once, deploy
everywhere” philosophy ensures that the product of the build process is exactly what is deployed in
production. It is also important to maintain the immutability of your containers. In other words, do not
patch running containers—rebuild and redeploy them instead.

Red Hat OpenShift provides a number of capabilities for automating builds based on external events,
as a way to improve the security of your custom images.

http://linkedin.com/company/red
https://access.redhat.com/articles/2803031
https://access.redhat.com/security/cve/cve-2019-5736
https://access.redhat.com/security/cve/CVE-2019-11091
https://access.redhat.com/security/cve/CVE-2019-11091
https://access.redhat.com/security/cve/CVE-2019-14835
https://www.openshift.com/products/quay
https://access.redhat.com/documentation/en-us/red_hat_quay/3.3/html/manage_red_hat_quay/container-security-operator-setup

6redhat.com Detail A layered approach to container and Kubernetes security

	� Red Hat Quay triggers provide a mechanism for spawning a repository build of a Dockerfile from
an external event such as a GitHub push, BitBucket push, GitLab push, or webhook.

	� Source-to-image (S2I) is an open source framework for combining source code and base images
(Figure 3). S2I makes it easy for your development and operations teams to collaborate on a
reproducible build environment. When a developer commits code with git, under S2I, Red Hat
OpenShift can:

	� Trigger automatic assembly of a new image from available artifacts, including the S2I base
image, and the newly committed code (via webhooks on the code repository or some other
automated CI process).

	� Automatically deploy the newly built image for testing.

	� Promote the tested image to production status and automatically deploy the new image
through the continuous integration and deployment (CI/CD) process.

Code

Build

Deploy

Container
image

Registry

O
P

S
D

E
V

Node

Pods

Node

Pods

Node

Pods

Red Hat
Enterprise

Linux

Red Hat
Enterprise

Linux

Red Hat
Enterprise

Linux

Figure 3. S2I is a toolkit and workflow for building reproducible ready-to-run container images from source code.

http://linkedin.com/company/red
https://github.com/openshift/source-to-image

7redhat.com Detail A layered approach to container and Kubernetes security

	� Red Hat OpenShift image streams can be used to watch changes to external images deployed
in your cluster. Image streams work with all the native resources available in Red Hat OpenShift,
such as builds or deployments, jobs, replication controllers, or replica sets. By watching an image
stream, builds and deployments can receive notifications when new images are added or modified
and react by automatically launching a build or deployment, respectively.

For example, consider an application built with three container image layers: base, middleware,
and the application layer. An issue is discovered in the base image and that image is rebuilt by
Red Hat and pushed to Red Hat’s ecosystem catalog. With image streams enabled, Red Hat
OpenShift can detect that the image has changed. For builds that are dependent on this image
and that have triggers defined, Red Hat OpenShift will automatically rebuild the application image,
incorporating the fixed base image.

Once the build is complete, the updated custom image is pushed to Red Hat OpenShift’s internal
registry. Red Hat OpenShift immediately detects changes to images in its internal registry and, for
applications where triggers are defined, automatically deploys the updated image, ensuring that
the code running in production is always identical to the most recently updated image. All of these
capabilities work together to integrate security capabilities into your CI/CD process and pipeline.

4. Integrate security into the application pipeline

Red Hat OpenShift includes integrated instances of Jenkins for CI and Tekton, a Kubernetes CI/CD
pipeline that works for containers (including serverless). Red Hat OpenShift also includes rich
RESTful application programming interfaces (APIs) that you can use to integrate your own build or
CI/CD tools including a private image registry.

A best practice for application security is to integrate automated security testing into your pipeline,
including your registry, your integrated development environment (IDE), and your CI/CD tools.

Registry: Container images can and should be scanned in your private container registry. You
can use Red Hat Quay with the Clair security scanner to notify developers as vulnerabilities are
discovered. The OpenShift Container Security Operator integrates with Red Hat Quay to provide
a cluster-wide view of known vulnerabilities for your deployed images in the OpenShift console.
Alternatively, multiple third-party certified container scanning solutions can be found in the
Red Hat Ecosystem Catalog.

IDE: Red Hat Dependency Analytics integrated development environment (IDE) plugins provide vul-
nerability warnings and remediation advice for project dependencies when the code is first brought
into the IDE.

CI/CD: Scanners can be integrated with CI for real-time checking against known vulnerabilities that
catalog the open source packages in your container, notify you of any known vulnerabilities, and
update you when new vulnerabilities are discovered in previously scanned packages.

Additionally, your CI process should include policies that flag builds with issues discovered by secu-
rity scans so your team can take appropriate action to address those issues as soon as possible.

Finally, we recommend that you sign custom built containers so that you can be sure they are not
tampered with between build and deployment.

http://linkedin.com/company/red
https://catalog.redhat.com/software/containers/explore
https://access.redhat.com/documentation/en-us/red_hat_quay/3.3/html/manage_red_hat_quay/container-security-operator-setup
https://catalog.redhat.com

8redhat.com Detail A layered approach to container and Kubernetes security

Deploy: Managing the configuration, security,
and compliance of your deployment

Effective security of your deployment includes securing the Kubernetes platform as well as automat-
ing deployment policies. Red Hat OpenShift includes the following capabilities out of the box:

1.	 Platform configuration and life cycle management.

2.	 Identity and access management.

3.	 Security for platform data and attached storage.

4.	 Deployment policies.

5. Platform configuration and life-cycle management

The Cloud Native Computing Foundation (CNCF) Kubernetes Security Audit, published in summer
2019, concluded that the greatest security threat to Kubernetes is the complexity of configuring and
hardening Kubernetes components. Red Hat OpenShift meets that challenge through the use of
Kubernetes Operators.

An Operator is a method of packaging, deploying, and managing a Kubernetes-native application.
An Operator acts as a custom controller that can extend the Kubernetes API with the application-
specific logic required to manage the application. Every Red Hat OpenShift platform component
is wrapped in an operator, delivering automated configuration, monitoring, and management for
OpenShift. Individual operators directly configure components such as the API server and the soft-
ware-defined network (SDN) while the cluster version operator manages multiple operators across
the platform. Operators let you automate cluster management, including updates, from the kernel to
services higher in the stack.

One of the key values of a container platform is that it enables developer self-service, making it
easier and faster for your development teams to deliver applications built on approved layers. A self-
service portal gives your teams enough control to foster collaboration while still providing secu-
rity. The Operator Lifecycle Manager (OLM) provides the framework for Red Hat OpenShift cluster
users to find and use operators to deploy the services needed to enable their applications. With OLM,
users can install, upgrade, and assign RBAC to available operators.

To help with compliance, Red Hat OpenShift provides the Compliance Operator to automate the
platform’s compliance with technical controls required by compliance frameworks. The Compliance
Operator lets Red Hat OpenShift administrators describe the desired compliance state of a cluster
and provides them with an overview of gaps and ways to remediate them. The Compliance Operator
assesses compliance of all platform layers, including the nodes running the cluster. The File Integrity
Operator is also available to run file integrity checks on the cluster nodes regularly.

6. Identity and access management

Given the wealth of features in Kubernetes for both developers and administrators, strong iden-
tity management and RBAC is a critical element of the container platform. Kubernetes APIs are key
to automating container management at scale. For example, APIs are used to initiate and validate
requests, including configuring and deploying pods and services.

API authentication and authorization is critical for providing security for your container platform. The
API server is a central point of access and should receive the highest level of security scrutiny. The
Red Hat OpenShift control plane includes built-in authentication through the Cluster Authentication

http://linkedin.com/company/red
https://www.cncf.io/blog/2019/08/06/open-sourcing-the-kubernetes-security-audit/
https://docs.openshift.com/container-platform/4.6/security/compliance_operator/compliance-operator-understanding.html
https://docs.openshift.com/container-platform/4.6/security/file_integrity_operator/file-integrity-operator-understanding.html
https://docs.openshift.com/container-platform/4.6/security/file_integrity_operator/file-integrity-operator-understanding.html
https://docs.openshift.com/container-platform/4.6/architecture/control-plane.html
https://docs.openshift.com/container-platform/4.6/operators/operator-reference.html#cluster-authentication-operator_red-hat-operators

9redhat.com Detail A layered approach to container and Kubernetes security

Operator. Developers, administrators, and service accounts obtain OAuth access tokens to authen-
ticate themselves to the API. As an administrator, you can configure the identity provider of your
choice to the cluster so users can authenticate before receiving a token. Nine identity providers are
supported, including lightweight directory access protocol (LDAP) directories.

Fine-grained RBAC is enabled by default in Red Hat OpenShift. RBAC objects determine whether a
user is allowed to perform a given action within a cluster. Cluster administrators can use the cluster
roles and bindings to control access levels to the OpenShift cluster and to projects within the cluster.

7. Security for platform data

Red Hat OpenShift hardens Kubernetes by default to provide security for data in transit. It also
includes options for data security at rest.

Red Hat OpenShift protects platform data in transit by:

	� Encrypting data in transit via https for all container platform components communicating
between each other.

	� Sending all communication with the control plane over transport layer security (TLS).

	� Ensuring access to the API Server is X.509 certificates- or token-based.

	� Using project quota to limit how much damage a rogue token could do.

	� Configuring etcd with its own certificate authority (CA) and certificates. (In Kubernetes, etcd
stores the persistent master state while other components watch etcd for changes to bring them-
selves into the specified state.)

	� Rotating platform certificates automatically.

Red Hat OpenShift protects platform data at rest by:

	� Optionally encrypting Red Hat Enterprise Linux CoreOS disks and the etcd datastore for
additional security.

	� Providing Federal Information Processing Standards (FIPS) readiness for Red Hat OpenShift.
FIPS 140-2 is a U.S. government security standard used to approve cryptographic modules. When
Red Hat Enterprise Linux CoreOS is booted in FIPS mode, Red Hat OpenShift platform compo-
nents call Red Hat Enterprise Linux cryptographic modules.

Containers are useful for both stateless and stateful applications. Red Hat OpenShift supports both
ephemeral and persistent storage. Protecting attached storage is a key element of securing stateful
services. Red Hat OpenShift supports multiple storage types, including network file system (NFS),
Amazon Web Services (AWS) Elastic Block Stores (EBS), Google Compute Engine (GCE) Persistent
Disks, Azure Disk, iSCSI, and Cinder.

In addition, Red Hat OpenShift Data Foundation is persistent software-defined storage integrated
with and optimized for Red Hat OpenShift. OpenShift Data Foundation offers highly scalable, persis-
tent storage for cloud-native applications that require features such as encryption, replication, and
availability across the hybrid multicloud.

http://linkedin.com/company/red
https://docs.openshift.com/container-platform/4.6/operators/operator-reference.html#cluster-authentication-operator_red-hat-operators
https://docs.openshift.com/container-platform/4.6/authentication/configuring-internal-oauth.html
https://docs.openshift.com/container-platform/4.6/authentication/understanding-identity-provider.html
https://docs.openshift.com/container-platform/4.6/storage/persistent_storage/persistent-storage-nfs.html
https://docs.openshift.com/container-platform/4.6/storage/persistent_storage/persistent-storage-aws.html
https://docs.openshift.com/container-platform/4.6/storage/persistent_storage/persistent-storage-gce.html
https://docs.openshift.com/container-platform/4.6/storage/persistent_storage/persistent-storage-gce.html
https://docs.openshift.com/container-platform/4.6/storage/persistent_storage/persistent-storage-azure.html
https://docs.openshift.com/container-platform/4.6/storage/persistent_storage/persistent-storage-iscsi.html
https://docs.openshift.com/container-platform/4.6/storage/persistent_storage/persistent-storage-cinder.html
https://www.openshift.com/products/container-storage/

10redhat.com Detail A layered approach to container and Kubernetes security

	� A persistent volume (PV) can be mounted on a host in any way supported by the resource pro-
vider. Providers will have different capabilities and each PV’s access modes are set to the spe-
cific modes supported by that particular volume. For example, NFS can support multiple read/
write clients, but a specific NFS PV might be exported on the server as read-only. Each PV gets
its own set of access modes describing that specific PV’s capabilities. Such as ReadWriteOnce,
ReadOnlyMany, and ReadWriteMany.

	� For shared storage (e.g., NFS, Ceph®, Gluster®), the trick is to have the shared storage persis-
tent volume (PV) register its group ID (gid) as an annotation on the PV resource. When the PV is
claimed by the pod, the annotated gid will be added to the supplemental groups of the pod and
give that pod access to the contents of the shared storage.

	� For block storage (e.g., EBS, GCE Persistent Disks, iSCSI), container platforms can use SELinux
capabilities to provide security for the root of the mounted volume for non-privileged pods,
making the mounted volume owned by, and only visible to, the container it is associated with.

Of course, you should take advantage of the security features available in your chosen
storage solution.

8. Automate policy-based deployment

Strong security includes automated policies that you can use to manage container and cluster
deployment from a security point of view.

	� Policy-based container deployment

Red Hat OpenShift clusters can be configured to allow or disallow images to be pulled from specific
image registries. It is a best practice for production clusters to only allow images to be deployed from
your private registry.

Red Hat OpenShift’s Security Context Constraints (SCCs) admission controller plugin defines a set
of conditions that a pod must run with in order to be accepted into the system. Security context
constraints let you drop privileges by default, which is important and still the best practice. Red Hat
OpenShift security context constraints (SCCs) ensure that, by default, no privileged containers run
on OpenShift worker nodes. Access to the host network and host process IDs are denied by default.

Users with the required permissions can adjust the default SCC policies to be more permissive if
they choose.

Red Had Advanced Cluster Management for Kubernetes provides advanced application life-cycle
management using open standards to deploy applications using placement policies that are inte-
grated into existing CI/CD pipelines and governance controls.

	� Policy-based multicluster management

Deploying multiple clusters can be useful to provide application high availability across multiple
availability zones or functionality for common management of deployments or migrations across
multiple cloud providers, such as Amazon Web Services (AWS), Google Cloud, and Microsoft Azure.
When managing multiple clusters, your orchestration tools will need to provide the security you
require across the different deployed instances. As always, configuration, authentication, and autho-
rization are key—as is the ability to pass data securely to your applications, wherever they run, and
managing application policies across clusters. Red Had Advanced Cluster Management provides:

http://linkedin.com/company/red
https://docs.openshift.com/container-platform/4.6/security/container_security/security-storage.html
https://docs.openshift.com/container-platform/4.6/authentication/managing-security-context-constraints.html
https://www.redhat.com/en/technologies/management/advanced-cluster-management
https://www.redhat.com/en/technologies/management/advanced-cluster-management

11redhat.com Detail A layered approach to container and Kubernetes security

	� Multicluster life-cycle management that allows you to create, update, and destroy Kubernetes
clusters reliably, consistently, and at scale.

	� Policy-driven governance risk and compliance utilizes policies to automatically configure and
maintain consistency of security controls according to industry corporate standards. You can also
specify a compliance policy to apply across one or more managed clusters.

Protect running applications

Beyond infrastructure, maintaining application security is critical. Providing security for your
containerized applications requires:

1.	 Container isolation.

2.	 Application and network isolation.

3.	 Application access security.

4.	 Observability.

9. Container isolation

To take full advantage of container packaging and orchestration technology, the operations team
needs the right environment for running containers. Operation teams need an OS that can secure
containers at the boundaries—securing the host kernel from container escapes and securing contain-
ers from each other.

Containers are Linux processes with isolation and resource confinement that let you run sandboxed
applications on a shared host kernel. Your security approach to containers should be the same as
your security approach to any running process on Linux.

NIST special publication 800-190 recommends using a container-optimized OS for additional
security. As the operating system base for Red Hat OpenShift, Red Hat Enterprise Linux CoreOS
reduces the attack surface by minimizing the host environment and tuning it for containers.
Red Hat Enterprise Linux CoreOS only contains the packages necessary to run Red Hat OpenShift
and its userspace is read-only. The platform is tested, versioned, and shipped in conjunction with
Red Hat OpenShift and it is managed by the cluster. Red Hat Enterprise Linux CoreOS installation
and updates are automated and always compatible with the cluster. It also supports the infrastruc-
ture of your choice, inheriting most of the Red Hat Enterprise Linux ecosystem.

Every Linux container running on a Red Hat OpenShift platform is protected by powerful Red Hat
Enterprise Linux security features built into Red Hat OpenShift nodes. Linux namespaces, SELinux,
Cgroups, capabilities, and secure computing mode (seccomp) are used to provide security for
containers running on Red Hat Enterprise Linux.

	� Linux namespaces provide the fundamentals of container isolation. A namespace makes it appear
to the processes within the namespace that they have their own instance of global resources.
Namespaces provide the abstraction that gives the impression you are running on your own OS
from inside a container.

	� SELinux provides an additional layer of security to keep containers isolated from each other and
from the host. SELinux allows administrators to enforce mandatory access controls (MAC) for
every user, application, process, and file. SELinux will stop you if you manage to break out of the

http://linkedin.com/company/red
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-190.pdf
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/system_design_guide/what-namespaces-are_setting-limits-for-applications
https://www.redhat.com/en/topics/linux/what-is-selinux

12redhat.com Detail A layered approach to container and Kubernetes security

namespace abstraction (accidentally or on purpose). SELinux mitigates container runtime vul-
nerabilities, and well-configured SELinux configurations can prevent container processes from
escaping their containment.

	� Cgroups (control groups) limit, account for, and isolate the resource usage (e.g., CPU, memory,
disk I/O, network) of a collection of processes. Use Cgroups to prevent your container resources
from being stomped on by another container on the same host. Cgroups can also be used to
control pseudo devices—a popular attack vector.

	� Linux capabilities can be used to lock down privileges in a container. Capabilities are distinct
units of privilege that can be independently enabled or disabled. Capabilities allow you to do
things such as send raw internet protocol (IP) packets or bind to ports below 1024. When
running containers, you can drop multiple capabilities without impacting the vast majority of
containerized applications. 	

	� Finally, a secure computing mode (seccomp) profile can be associated with a container to restrict
available system calls.

10. Application and network isolation

Multitenant security is essential for enterprise-scale use of Kubernetes. Multitenancy allows you to
have different teams use the same cluster while preventing unauthorized access to each other’s envi-
ronments. Red Hat OpenShift supports multitenancy through a combination of kernel namespaces,
SELinux, RBAC, Kubernetes (project) namespaces, and network policies.

	� Red Hat OpenShift projects are Kubernetes namespaces with SELinux annotations. Projects
isolate applications across teams, groups, and departments. Local roles and bindings are used to
control who has access to individual projects.

	� Security context constraints let you drop privileges by default, which is important and still the
best practice. Red Hat OpenShift security context constraints (SCCs) ensure that, by default,
no privileged containers run on OpenShift worker nodes. Access to the host network and host
process IDs are denied by default.

Deploying modern microservices-based applications in containers often means deploying multiple
containers distributed across multiple nodes. These microservices need to discover and communi-
cate with each other. With network defense in mind, you need a container platform that allows you to
take a single cluster and segment the traffic to isolate different users, teams, applications, and envi-
ronments within that cluster. You also need tools to manage external access to the cluster and access
from cluster services to external components. Achieving network isolation requires the following
key properties:

	� Ingress traffic control. Red Hat OpenShift includes CoreDNS to provide a name resolution
service to pods. The Red Hat OpenShift router (HAProxy) supports ingress and routes to provide
external access to services running on-cluster. Both support reencrypt and passthrough poli-
cies: “reencrypt” decrypts and reencrypts HTTP traffic when forwarding it whereas “passthrough”
passes traffic through without terminating TLS.

	� Network namespaces. The first line in network defenses comes from network namespaces.
Each collection of containers (known as a “pod”) gets its own IP and port range to bind to, thereby
isolating pod networks from each other on the node. The pod IP addresses are independent of the
physical network that Red Hat OpenShift nodes are connected to.

http://linkedin.com/company/red
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_monitoring_and_updating_the_kernel/setting-limits-for-applications_managing-monitoring-and-updating-the-kernel
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/container_security_guide/linux_capabilities_and_seccomp
https://www.redhat.com/sysadmin/container-security-seccomp

13redhat.com Detail A layered approach to container and Kubernetes security

	� Network policies: The Red Hat OpenShift SDN uses network policies to provide fine-grained
control of communication between pods. Network traffic can be controlled to any pod from any
other pod, on specific ports and in specific directions. When network policies are configured in
multitenant mode, each project gets its own virtual network ID, thereby isolating project networks
from each other on the node. In multitenant mode (by default) pods within a project can com-
municate with each other but pods from different namespaces cannot send packets to or receive
packets from pods or services of a different project.

	� Egress traffic control. Red Hat OpenShift also provides the ability to control egress traffic from
services running on the cluster using either router or firewall methods. For example, you can use IP
whitelisting to provide access to an external database.

11. Securing application access

Securing your applications includes managing application user and API authentication
and authorization.

	� Controlling user access

Web single sign-on (SSO) capabilities are a key part of modern applications. Container platforms
can come with a number of containerized services for developers to use when building their appli-
cations. Red Hat Single Sign-On is a fully supported, out-of-the-box security assertion markup
language (SAML) 2.0 or OpenID Connect-based authentication, web single sign-on, and federation
service based on the upstream Keycloak project. Red Hat Single Sign-On features client adapters for
Red Hat Fuse and Red Hat JBoss Enterprise Application Platform. Red Hat Single Sign-On enables
authentication and web single sign-on for Node.js applications and can be integrated with LDAP-
based directory services including Microsoft Active Directory and Red Hat Enterprise Linux Identity
Management. Red Hat Single Sign-On also integrates with social login providers such as Facebook,
Google, and Twitter.

	� Controlling API access

APIs are key to applications composed of microservices. These applications have multiple indepen-
dent API services, leading to proliferation of service endpoints which require additional tools for gov-
ernance. We recommend using an API management tool. Red Hat 3scale API Management gives you
a variety of standard options for API authentication and security that can be used alone or in combi-
nation to issue credentials and control access.

The access control features available in Red Hat 3scale API Management go beyond basic secu-
rity and authentication. Application and account plans let you restrict access to specific endpoints,
methods, and services, and apply access policies for groups of users. Application plans allow you to
set rate limits for API usage and control traffic flow for groups of developers. You can set per-period
limits for incoming API calls to protect your infrastructure and keep traffic flowing smoothly. You can
also automatically trigger overage alerts for applications that reach or exceed rate limits, and define
behavior for over-limit applications.

	� Securing application traffic

Securing application traffic with cluster ingress and egress options is covered in section 10 of this
paper. For microservice-based applications, security traffic between services on the cluster is
equally important. A service mesh can be used to deliver this management layer. The term “service
mesh” describes the network of microservices that make up applications in a distributed microser-
vice architecture and the interactions between those microservices.

http://linkedin.com/company/red
https://docs.openshift.com/container-platform/4.6/networking/network_policy/about-network-policy.html
https://docs.openshift.com/container-platform/4.6/networking/network_policy/multitenant-network-policy.html
https://access.redhat.com/products/red-hat-single-sign-on
https://www.redhat.com/en/technologies/jboss-middleware/3scale

14redhat.com Detail A layered approach to container and Kubernetes security

Based on the open source Istio project, Red Hat OpenShift Service Mesh adds a transparent layer
on existing distributed applications for managing service-to-service communication without requir-
ing any changes to the service code. Red Hat OpenShift Service Mesh uses a multitenant operator
to manage the control plane life cycle, enabling OpenShift Service Mesh to be used on a per-project
basis. Furthermore, OpenShift Service Mesh does not require cluster-scoped RBAC resources.

Red Hat OpenShift Service Mesh provides discovery, load balancing, and, key to security, service-to-
service authentication and encryption, failure recovery, metrics, and monitoring.

3scale Istio Adapter is an optional adapter that allows you to label a service running within Red Hat
OpenShift Service Mesh.

12. Observability

The ability to monitor and audit a Red Hat OpenShift cluster is an important part of safeguarding the
cluster and its users against inappropriate usage. Red Hat OpenShift includes built-in monitoring and
auditing as well as an optional logging stack.

Red Hat OpenShift services connect to the built-in monitoring solution composed of Prometheus
and its ecosystem. An alert dashboard is available. Cluster administrators can optionally enable mon-
itoring for user-defined projects. Applications deployed to Red Hat OpenShift can be configured to
take advantage of the cluster monitoring components.

Auditing events is a security best practice and generally required to comply with regulatory frame-
works. At its core, Red Hat OpenShift auditing was designed using a cloud-native approach to
provide both centralization and resiliency. In Red Hat OpenShift, host auditing and event auditing are
enabled by default on all nodes. Red Hat OpenShift provides extraordinary flexibility for configuring
management and access to auditing data. You can control the amount of information that is logged
to the API server audit logs by choosing which audit log policy profile to use.

Monitoring, audit, and log data is RBAC-protected. Project data is available to project administrators
and cluster data is available to cluster administrators.

As a best practice, configure your cluster to forward all audit and log events to a security information
and event management (SIEM) system for integrity management, retention, and analysis. Cluster
administrators can deploy cluster logging to aggregate all the logs from the Red Hat OpenShift
cluster, such as host and API audit logs, as well as application container logs and infrastructure logs.
Cluster logging aggregates these logs from throughout your cluster nodes and stores them in a
default log store. Multiple options are available for forwarding logs to the SIEM of your choice.

http://linkedin.com/company/red
https://www.openshift.com/learn/topics/service-mesh
https://docs.openshift.com/container-platform/4.6/service_mesh/v1x/threescale-adapter.html
https://docs.openshift.com/container-platform/4.6/security/audit-log-policy-config.html

15redhat.com Detail A layered approach to container and Kubernetes security

Extending security with a robust ecosystem

To further enhance your container and Kubernetes security or to meet existing policies, you may
choose to integrate with third-party security tools. Red Hat has a broad ecosystem of certified part-
ners offering solutions such as:

	� Privileged access management.

	� External certificate authorities.

	� External vaults and key management solutions.

	� Container content scanners and vulnerability management tools.

	� Container runtime analysis tools.

	� SIEM.

Conclusion

Deploying container-based applications and microservices is not just about security. Your container
platform needs to provide an experience that works for your developers and your operations team.
You need a security-focused, enterprise-grade, container-based application platform that empow-
ers developers and operators without compromising the functions needed by each team, while also
improving operational efficiency and infrastructure utilization.

Red Hat OpenShift is built on a core of standard and portable Linux containers that deliver built-in
security features, including:

	� Integrated build and CI/CD tools for more secure DevOps practices.

	� Hardened, enterprise-ready Kubernetes with built-in platform configuration, compliance, and life-
cycle management.

	� Strong RBAC with integrations to enterprise authentication systems.

	� Options for managing cluster ingress and egress.

	� Integrated SDN and service mesh with support for network microsegmentation.

	� Support for providing security for remote storage volumes.

	� Red Hat Enterprise Linux CoreOS, optimized for running containers at scale with strong isolation.

	� Deployment policies to automate runtime security.

	� Integrated monitoring, audit, and logging.

Red Hat OpenShift also provides the largest collection of supported programming languages,
frameworks, and services (Figure 4). Red Hat Advanced Cluster Management for Kubernetes pro-
vides tightly integrated multicluster management.

Red Hat OpenShift is available to run on OpenStack®, VMware, bare metal, AWS, Google Cloud
Platform (GCP), Azure, IBM Cloud, and any platform that supports Red Hat Enterprise Linux.
Red Hat also provides Red Hat OpenShift Dedicated on AWS and GCP as a public cloud service.
Azure Red Hat OpenShift is jointly offered by Red Hat and Microsoft. Red Hat OpenShift Service
on AWS is jointly offered by Red Hat and Amazon.

http://linkedin.com/company/red
https://connect.redhat.com/partner-with-us/build-software
https://connect.redhat.com/partner-with-us/build-software
https://docs.openshift.com/container-platform/4.6/welcome/index.html
https://www.openshift.com/dedicated/

Copyright © 2021 Red Hat, Inc. Red Hat, the Red Hat logo, OpenShift, Ceph, Gluster, and JBoss are trademarks or registered trademarks
of Red Hat, Inc. or its subsidiaries in the United States and other countries. Linux® is the registered trademark of Linus Torvalds in the U.S.
and other countries. The OpenStack word mark and the Square O Design, together or apart, are trademarks or registered trademarks of
OpenStack Foundation in the United States and other countries, and are used with the OpenStack Foundation’s permission. Red Hat, Inc. is
not affiliated with, endorsed by, or sponsored by the OpenStack Foundation or the OpenStack community

NORTH AMERICA
1 888 REDHAT1

EUROPE, MIDDLE EAST,
AND AFRICA
00800 7334 2835
europe@redhat.com

ASIA PACIFIC
+65 6490 4200
apac@redhat.com

LATIN AMERICA
+54 11 4329 7300
info-latam@redhat.comfacebook.com/redhatinc

@RedHat
linkedin.com/company/red-hat

About Red Hat
Red Hat is the world’s leading provider of enterprise open source software solutions, using a community-powered
approach to deliver reliable and high-performing Linux, hybrid cloud, container, and Kubernetes technologies.
Red Hat helps customers integrate new and existing IT applications, develop cloud-native applications, standardize on
our industry-leading operating system, and automate, secure, and manage complex environments. Award-winning
support, training, and consulting services make Red Hat a trusted adviser to the Fortune 500. As a strategic partner
to cloud providers, system integrators, application vendors, customers, and open source communities, Red Hat can
help organizations prepare for the digital future.

redhat.com
#F28595_0621

As a leading provider bringing trusted open source solutions to enterprise customers for over two
decades, Red Hat brings this same level of trust and security to containers through solutions like
Red Hat OpenShift, Red Hat Advanced Cluster Management, and our container-enabled Red Hat
product portfolio.

Expand your security tool kit

Find, try, and buy container-based security software on Red Hat Marketplace. Deploy to any cloud
running Red Hat OpenShift.

EdgeManaged cloud
(Azure, AWS, GCP,

IBM, Red Hat)

Public cloudPrivate cloudVirtualPhysical

Multichannel management
Inventory | Policy | Compliance | Configuration | Workloads

Platform services

Service Mesh
Serverless | Builds

CI/CD pipelines
Log management
Cost management

Manage workloads

Application services

Language and runtimes
API management

Integration
Messaging

Process automation

Build cloud-native apps

Data services

Databases | Cache
Data ingestion and

preparation
Data analytics | AI/ML

Data mgmt and resilience

Data-driven insights

Developer services

Developer CLI | IDE
Plugins and extensions

Cloud-native IDE |
Local developer sandbox

Developer productivity

Cluster services
Instal | Operators | Over-the-air-updates | Monitoring | Logging | Registry | Storage | Networking | Security | Ingress routing

Kubernetes

Red Hat Enterprise Linux and Red Hat Enterprise Linux CoreOS

Advanced
cluster

management

Red Hat
OpenShift

OpenShift
Kubernetes

Engine

Figure 4. Red Hat OpenShift provides a full featured technology stack across physical virtual, private,
and public clouds.

Detail

mailto:europe@redhat.com
mailto:apac@redhat.com
mailto:info-latam@redhat.com
http://facebook.com/redhatinc
https://twitter.com/redhatnews
https://twitter.com/redhatnews
https://marketplace.redhat.com/en-us

