
redhat.com

facebook.com/redhatinc
@redhat

linkedin.com/company/red-hat

Table of contents

	 1	 Introduction... 2

	2	 Identifying functionality for refactoring as a microservice... 3

	3	 Red Hat Runtimes.. 4

	4	 Choosing open source technology for microservices.. 4

	 4.1	 Thorntail (Eclipse MicroProfile)..5

	4.2	 The Spring Framework and Spring Boot...7

	4.3	 Eclipse Vert.x... 8

	5	 Summary..10

Detail

A developer’s guide to moving from
monoliths to microservices

http://redhat.com
http://facebook.com/redhatinc
https://twitter.com/redhat
http://linkedin.com/company/red-hat

2redhat.com Detail A developer’s guide to moving from monoliths to microservices

Figure 1. Application modernization involves selectively replacing in-app functionality with microservices.

Introduction

Cloud-native development is increasingly important for organizations that want to exploit microser-
vices through containerized and orchestrated cloud deployments. However, completely rewriting all
legacy applications is seldom feasible due to time and cost requirements. Red Hat’s stepwise cloud
migration approach reuses existing functionality and data as much as possible. The process moves
existing workloads to a modern deployment platform and ultimately applies new processes, products,
and technologies to modernize the application.

Modernizing monolithic applications starts with a “lift-and-shift” process as a first step to cloud-native
development. Described in A developer’s guide to lift-and-shift cloud migration, this process includes:

•	 Containerizing existing monolithic workloads.

•	 Deploying the workload on Red Hat® OpenShift® Container Platform, Red Hat’s Kubernetes appli-
cation platform solution.

•	 Retaining external integrations and data on the legacy platform.

Once those steps are accomplished, developers can begin to “strangle the monolith.” As shown in
Figure 1, this process involves incrementally replacing in-app functionality with microservices that
are lighter, faster, and easier to maintain. As functionality is replaced, portions of the monolith can
be optionally removed or retired. Developers can also introduce new functionality through new
microservices during this process to make the application more attractive to customers or business
stakeholders.

JavaScriptHTML Web

CatalogInventory Cart

RatingPromo Orders

Data access
Sping Boot

Catalog

Thorntail

Inventory

Vert.x

Cart

MicroProfile

Service

Vert.x

Orders

Quarkus

Service

Node.js

Web

http://redhat.com
https://www.redhat.com/en/resources/developer-guide-lift-and-shift-cloud-migration

3redhat.com Detail A developer’s guide to moving from monoliths to microservices

Identifying functionality for refactoring as a microservice

Moving from monoliths to microservices presents development teams with the opportunity to refac-
tor their code—either improving existing functionality or introducing new functionality while reducing
the inherent complexity of the monolith. Unfortunately, the process of deciding what functionality to
extract into a microservice can be complex. While viewing software as a single unified model would be
ideal, it is often not practical with large models and teams.

The proven domain-driven design concept offers an effective strategy that connects software imple-
mentation to an evolving model, potentially based on microservices. In particular, using the bounded
context pattern can be a constructive way to divide application functionality into meaningful com-
ponent parts that are candidates for refactoring as microservices. Through this approach, large,
complex models are divided into bounded contexts, with specific interrelationships between contexts.

This guide provides discussion around the process of “strangling the monolith”—extending and aug-
menting a monolith that implements a fictitious “Coolstore” online store with additional microservices.
Once it has been lifted and shifted, the monolith continues to function within Red Hat OpenShift
Container Platform, while new microservices are seamlessly introduced to replace or augment in-app
functionality (Figure 2). In this example, new services are added to the monolith based on open
source runtimes including:

1.	An inventory microservice built with Thorntail, Red Hat’s implementation of Eclipse MicroProfile.

2.	A catalog microservice built with Spring Boot.

3.	A shopping cart microservice and database built with Eclipse Vert.x.

Future services could then be added as desired to replace or extend application functionality.

Figure 2. Modernizing a lifted-and-shifted monolith with microservices, all running on Red Hat OpenShift
Container Platform.

Coolstore
database

(prod)

Cart
microservice

Cart
database

Catalog
microservice

Catalog
database

Inventory
microservice

Inventory
database

Coolstore-prod

Cart Catalog

InventoryFuture services

Lifted and shifted
monolithic applicaiton

New distributed
microservices

Coolstore
monolith

User interface

Checkout

http://redhat.com
https://www.martinfowler.com/bliki/BoundedContext.html
https://www.martinfowler.com/bliki/BoundedContext.html
https://thorntail.io
https://spring.io/projects/spring-boot
https://vertx.io

4redhat.com Detail A developer’s guide to moving from monoliths to microservices

Red Hat Runtimes

Red Hat Runtimes provides developers with multiple modernization options to enable a smooth tran-
sition to the cloud for existing applications. Teams benefit from using a single cloud-native develop-
ment platform for creating new applications and transitioning from monoliths to microservices at their
own pace. Multiple runtimes and frameworks are supported in Red Hat Runtimes.

•	 Runtimes include Red Hat JBoss Enterprise Application Platform, Eclipse Vert.x, Thorntail,
and Node.js.

•	 Frameworks include Spring Boot, Netflix Ribbon, and Netflix Hystrix.

The product’s launch service helps developers get up and running quickly in the cloud through a
number of ready-to-run examples—or mission boosters—that demonstrate the power of Red Hat
Runtimes (Figure 3).

Figure 3. Red Hat Runtimes simplifies cloud-native development.

Laptop Datacenter OpenStack® Amazon
Web Services

Microsoft
Azure

Google
Cloud

YOUR INFRASTRUCTURE

YOUR APPS AND SERVICES

Red Hat Runtimes

Launch service

Reactive
Vert.x

MicroProfile
Thorntail

Spring Boot
Tomcat

JavaScript
Node.js

Java EE
JBoss EAP

Choosing open source technology for microservices

The process documented in A developer’s guide to lift-and-shift cloud migration describes how an
existing monolithic Java™ EE application could be moved to the cloud with Red Hat JBoss Enterprise
Application Platform and Red Hat OpenShift Container Platform, demonstrating some of the power
of Red Hat OpenShift for existing applications. Moving to microservices, in turn, involves breaking
down the application into smaller pieces for greater parallelization and autonomy. The process can
reduce time to value, with the eventual goal of redesigning the entire application as a set of distrib-
uted microservices. Different technologies may be ideal for implementing different microservices.
For example:

http://redhat.com
https://www.redhat.com/en/resources/red-hat-application-runtimes-datasheet
https://www.redhat.com/en/technologies/jboss-middleware/application-platform
https://vertx.io
https://thorntail.io
https://nodejs.org/en/
https://spring.io/projects/spring-boot
https://github.com/Netflix/ribbon
https://github.com/Netflix/Hystrix
https://www.redhat.com/en/resources/developer-guide-lift-and-shift-cloud-migration
https://www.redhat.com/en/technologies/jboss-middleware/application-platform
https://www.redhat.com/en/technologies/jboss-middleware/application-platform
https://www.openshift.com/products/container-platform

5redhat.com Detail A developer’s guide to moving from monoliths to microservices

•	Thorntail, which implements the MicroProfile specification, is ideal for refactoring existing Java
EE applications with microservices, as well as those using Red Hat JBoss Enterprise Application
Platform.

•	Spring Boot can help build web applications that use the Spring ecosystem, resulting in a short path
to production.

•	Elipse Vert.x facilitates building reactive microservices for mobile or web apps, application pro-
gramming interfaces (APIs), Internet of Things (IoT) apps, and real-time apps.

•	Node.js provides server-side JavaScript ideal for building mobile and web apps, as well as building
APIs and real-time apps.

Thorntail (Eclipse Microprofile)

Thorntail is a great place to start for existing Java EE applications. Existing skills as a Java EE devel-
oper likewise translate naturally to the world of Thorntail. As a MicroProfile implementation,1 Thorntail
provides a lightweight implementation with specialized tooling for developers. Thorntail “pieces”
support the compositional aspect in Thorntail and provide a specific piece of functionality embodied
as an Apache Maven artifact, offering:

•	A way to add API dependencies (e.g., JAX-RS).

•	The ability to configure the system with reasonable defaults.

•	Discovery of other components as a part of a topology.

•	A means to alter deployments.

Pieces can be auto-detected or explicitly declared.

Thorntail provides cloud-native support, including:

•	Health checks.

•	Externalized configuration.

•	Client-side discovery and load balancing.

•	Circuit breaking and bulkheading.

•	Logging, monitoring, tracing, and metrics.

•	Enterprise-level security deployment with Keycloak.

In a typical scenario, a developer would implement one component of the monolith as a Thorntail
microservice and deploy it to Red Hat OpenShift Container Platform. The new microservice would be
deployed alongside the existing monolith, running in tandem with it. For example, Thorntail could be
used to implement an inventory microservice and database (Figure 4).

	 1	 Eclipse MicroProfile is designed to optimize enterprise Java for the microservices architecture. https://microprofile.io.

http://redhat.com
https://www.keycloak.org
https://microprofile.io

6redhat.com Detail A developer’s guide to moving from monoliths to microservices

Building the service involves writing some code to create a domain model, service interface, and
a RESTful endpoint to access inventory (Figure 5). When complete, the REST services define two
endpoints:

•	 /services/inventory that is accessible via HTTP GET, which will return all known product Inventory
entities as JSON.

•	 /services/inventory/<id> that is accessible via HTTP GET, with the last path parameter being the
product ID for which we want to check inventory status (e.g., /services/inventory/329299).

Figure 4. A new inventory microservice and database based on Thorntail runs alongside the existing
monolithic application.

Figure 5. Inventory database and components.

Inventory
microservice

Inventory
database

Inventory

Future services

Coolstore
database

(prod)

Coolstore-prod

Coolstore
monolith

User interface

Request
/services/inventory

JAX-RS

RESTful endpoint
(InventoryEndpoint.java)

Server layer
(InventoryService.java)

Java Persistence API

Domain model
(Inventory.java)

Inventory
database

http://redhat.com

7redhat.com Detail A developer’s guide to moving from monoliths to microservices

The Spring Framework and Spring Boot

The previous scenario resulted in the creation of an inventory service and database, but so far we have
not started truly strangling the monolith. The inventory service is never called directly by the user
interface (UI)—since it is a back-end service that is used only by other back-end services. This section
describes adding a catalog service that will, in turn, call the inventory service. Eventually, UI calls will
be rerouted to the new service.

This example uses the Spring Framework, also available as a part of Red Hat Runtimes. Spring is one
of the most popular Java frameworks and offers an alternative to the Java EE programming model.
Reasons for choosing Spring or another platform mostly depend on personal preferences or existing
knowledge. At their core, Spring and Java EE are similar.

Spring is popular for building applications based on microservices architectures. Spring Boot is
a popular tool in the Spring ecosystem that helps with organizing and using third-party libraries
together with Spring and also provides a mechanism for bootstrapping embeddable runtimes, like
Apache Tomcat. Bootable applications (sometimes also called fat jars) fit the container model well. In
Red Hat OpenShift Container Platform, responsibilities like starting, stopping, and monitoring appli-
cations are handled by the container platform instead of an application server. Like Thorntail, Spring
provides full cloud-native functionality.

As a part of Red Hat Runtimes, Spring support includes:

•	 Red Hat testing and verification of Sprint Boot, Spring Cloud Kubernetes, Ribbon, and Hystrix.

•	 Full support for Tomcat, Hibernate, Apache CXF, single sign-on (with Keycloak), and messaging
with Red Hat AMQ.

•	 Native Kubernetes and OpenShift integration (Spring Cloud) for service discovery via Kubernetes
and Ribbon and Spring Cloud Config via ConfigMap.

•	 Developer tooling with launch.openshift.io and starters.

As an example, Spring Boot could be used to add a catalog microservice and database to our
Coolstore online store application. The catalog microservice would, in turn, use the inventory
microservice developed in the previous step (Figure 6).

http://redhat.com
https://www.redhat.com/en/technologies/jboss-middleware/amq
https://spring.io/projects/spring-cloud-config
https://cloud.google.com/kubernetes-engine/docs/concepts/configmap
https://launch.openshift.io/launch/login?request=/

8redhat.com Detail A developer’s guide to moving from monoliths to microservices

Eclipse Vert.x

Reactive microservices provide responses to stimuli. Eclipse Vert.x is a toolkit used to build distrib-
uted and reactive systems. With an asynchronous nonblocking development model and a fundamen-
tal understanding of clustering in its core architecture, Vert.x offers:

•	Simplified concurrency (event loop).

•	Reactive microservices, web applications, and IoT.

•	High-volume, low-latency applications.

Vert.x is event-driven and nonblocking, which means that applications in Vert.x can handle many con-
current requests using a small number of kernel threads. It supports everything from network utilities,
sophisticated modern web applications, HTTP/REST microservices, and high-volume event process-
ing to a full-blown back-end message-bus application. Vert.x is:

•	Trusted. It is used by many different companies with apps that range from real-time gaming
to banking.

•	Lightweight. Vert.x core is around 650KB in size.

•	Fast, as attested by independent performance results.

•	Modular. When you need more functionality, just add the components you need and nothing more.

With Vert.x, you can:

•	Scale your apps with minimal hardware.

•	Create powerful apps the way you want in the language you want. Vert.x is not a restrictive frame-
work or container, and it does not dictate how to write an application.

Figure 6. The catalog microservice built with Spring Boot communicates with the inventory service built with Thorntail.

Coolstore
database

(prod)

Catalog
microservice

Catalog
database

Inventory
microservice

Inventory
database

Coolstore-prod

Catalog

Inventory

Coolstore
monolith

User interface

http://redhat.com
http://vertx.io/whos_using/
https://www.techempower.com/benchmarks/#section=data-r8&hw=i7&test=plaintext

9redhat.com Detail A developer’s guide to moving from monoliths to microservices

•	Run your apps wherever you want. Vert.x is not an application server, and there is no monolithic
Vert.x instance into which you deploy applications.

•	Create lightweight, high-performance microservices.

In our example application, Vert.x could be used to implement a shopping cart microservice. As shown
in Figure 7, this reactive microservice would:

•	Communicate with the UI for user interaction.

•	Communicate with the catalog microservice to aid user shopping.

•	Communicate with the original Coolstore monolith for checkout.

Figure 7. An adaptive shopping cart microservice built with Eclipse Vert.x communicates with the UI and the
catalog microservice.

Coolstore
database

(prod)

Cart
microservice

Cart
database

Catalog
microservice

Catalog
database

Inventory
microservice

Inventory
database

Coolstore-prod

Cart Catalog

InventoryFuture services

Coolstore
monolith

User interface

Checkout

http://redhat.com

Copyright © 2019 Red Hat, Inc. Red Hat, Red Hat Enterprise Linux, the Red Hat logo, and JBoss are trademarks or registered trademarks of
Red Hat, Inc. or its subsidiaries in the United States and other countries. Linux® is the registered trademark of Linus Torvalds in the U.S. and
other countries.

NORTH AMERICA
1 888 REDHAT1

About Red Hat

Red Hat is the world’s leading provider of open source software solutions, using a community-
powered approach to provide reliable and high-performing cloud, Linux, middleware, storage, and
virtualization technologies. Red Hat also offers award-winning support, training, and consulting services. As
a connective hub in a global network of enterprises, partners, and open source communities, Red Hat helps
create relevant, innovative technologies that liberate resources for growth and prepare customers for the
future of IT.

EUROPE, MIDDLE EAST,
AND AFRICA
00800 7334 2835
europe@redhat.com

ASIA PACIFIC
+65 6490 4200
apac@redhat.com

LATIN AMERICA
+54 11 4329 7300
info-latam@redhat.comfacebook.com/redhatinc

@redhat
linkedin.com/company/red-hat

redhat.com
#F19178_0919

Summary

Red Hat Runtimes offers developers cloud-native development tools and platforms to help organiza-
tions move to microservices. After a monolith has been lifted and shifted to the cloud using Red Hat
JBoss Enterprise Application Platform and Red Hat OpenShift Container Platform, microservices can
be added to replace or augment aspects of the monolith, all while the monolith continues to operate.
With platforms like Thorntail, which implements the MicroProfile specification, Spring Boot, Node.js,
and Eclipse Vert.x, developers have control and choice for implementing microservices in the cloud.

Detail

mailto:europe@redhat.com
mailto:apac@redhat.com
mailto:info-latam@redhat.com
http://facebook.com/redhatinc
https://twitter.com/redhat
http://linkedin.com/company/red-hat

