Red Hat OpenShift Container Storage deployment agility

Converged, disaggregated, and decoupled options for scale, sharing, and fault-domain isolation

Addressing container storage agility, resilience, and performance at scale

Cloud-native app developers and data scientists need their data-intensive apps and machine learning (ML) pipelines to work the same wherever they are on the hybrid cloud, without variability in storage services capabilities, resilience, or performance at scale. Red Hat® OpenShift® Container Platform coupled with Red Hat OpenShift Container Storage provide these workloads with a consistent, container-based operating environment across the hybrid cloud.

Red Hat OpenShift Container Storage deployment options

OpenShift Container Storage now offers solution architects multiple deployment options to address these workload needs. These deployment options (Figure 1) preserve a common, consistent storage services interface to applications and workloads, while each provides different benefits:

- **Converged internal mode** schedules applications and OpenShift Container Storage pods on the same nodes in the same Red Hat OpenShift cluster, offering simplified management, deployment speed, and agility.
- **Disaggregated internal mode** separates application and storage pods on different nodes in the same Red Hat OpenShift cluster, allowing an organization to balance Red Hat OpenShift compute and storage resources independently.
- **External mode** decouples storage from Red Hat OpenShift clusters, allowing multiple Red Hat OpenShift clusters to consume storage from a single, external Red Hat Ceph Storage cluster.

OpenShift Container Storage coupled with the latest Intel Xeon® processors and Intel solid state drive (SSD) technology provides a compelling solution to these challenges. OpenShift Container Storage lets you couple container-based apps running in OpenShift Container Platform with an external Red Hat Ceph® Storage cluster. Building OpenShift Container Storage internal and external clusters with Intel technologies can enhance performance for data intensive workloads.

Highlights

- Architect container-native storage according to your organization’s governance needs.
- Deploy with speed and agility using Red Hat OpenShift Container Storage internal mode.
- Scale with performance and fault-domain isolation using OpenShift Container Storage external mode.
- Serve multiple OpenShift Container Platform clusters with the same Red Hat Ceph Storage cluster to unify development, test, and production, or honor data governance policies.
- Protect your Red Hat Ceph Storage cluster investment by extending its services to Red Hat OpenShift clusters.
- Optimize OpenShift Container Storage performance with Intel® Xeon® Scalable processors, Intel Optane SSDs, and QLC NAND SSDs.

Figure 1. OpenShift Container Storage internal and external modes.

1. External mode is available with Red Hat OpenShift Container Storage 4.5 or later. See the OpenShift Container Storage documentation for more information.
External mode benefits:

- Red Hat OpenShift Container Platform can access pre-existing Red Hat Ceph Storage clusters directly, eliminating the need to move data.
- Multiple Red Hat OpenShift clusters can now share the same Red Hat Ceph Storage cluster, supporting different teams or business units.
- Internal and external OpenShift Container Storage modes can both be tuned and optimized, with external mode offering petabyte scalability for data-intensive apps.
- External mode isolates the storage fault domain to meet governance needs, while offering consistent OpenShift Container Storage semantics.

Workload performance results

Recent Red Hat and Intel testing compared the performance of a PostgreSQL workload running on OpenShift Container Storage using Intel Xeon Scalable processors with Intel Optane solid state drives (SSDs) and QLC NAND SSDs. Testing employed the same OpenShift Container Platform cluster hardware, configured alternately for OpenShift Container Storage internal mode and external mode. The PostgreSQL test bench simulated multiple databases being queried by multiple clients for a variety of query types, demonstrating an increase in transactions per second (TPS) for external mode, particularly as the number of Red Hat OpenShift worker nodes and databases were increased (Figure 2).

![Figure 2. PostgreSQL on different OpenShift Container Storage deployment modes](image)

Conclusion

Red Hat OpenShift Container Storage internal and external deployment modes offer applications a common, consistent interface while addressing a spectrum of different enterprise needs. Workload performance on OpenShift Container Storage internal and external modes can be comparable, with similar media, CPU, and memory allocation. OpenShift Container Storage external mode can provide better performance at scale as workloads grow and concurrency increases.

About Red Hat

Red Hat is the world’s leading provider of enterprise open source software solutions, using a community-powered approach to deliver reliable and high-performing Linux, hybrid cloud, container, and Kubernetes technologies. Red Hat helps customers integrate new and existing IT applications, develop cloud-native applications, standardize on our industry-leading operating system, and automate, secure, and manage complex environments. Award-winning support, training, and consulting services make Red Hat a trusted adviser to the Fortune 500. As a strategic partner to cloud providers, system integrators, application vendors, customers, and open source communities, Red Hat can help organizations prepare for the digital future.