
REPORT

DevSecOps  
in Kubernetes
Wei Lien Dang &  
Ajmal Kohgadai

Compliments of



Continuous Security for
Cloud-Native Applications

Red Hat Advanced Cluster Security for Kubernetes — The first 
Kubernetes-native security platform that enables organizations 
to securely build, deploy, and run cloud-native applications anywhere.

Lower Operational Cost

DevOps and Security teams
can use a common language
and source of truth

Secure Supply Chain

Standardize on Kubernetes 
as your common platform for
declarative and continuous security

Reduce Operational Risk

Ensure alignment between 
security and infrastructure to 
reduce application downtime

Secure Infrastructure

Leverage native controls for 
built-in security that works 
with Kubernetes, not against

Increase Developer Productivity

Leverage Kubernetes to seamlessly 
provide guardrails supporting 
developer velocity

Secure Workloads

Accelerate your pace of innovation 
while ensuring your applications 
comply with security policies

Contact us today to get started
redhat.com/products/kubernetes-security

https://www.redhat.com/en/engage/rhacs-demo-request-e-202104200150?intcmp=7013a000002wL73AAE


Wei Lien Dang and Ajmal Kohgadai

DevSecOps in Kubernetes

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing



978-1-098-10175-6

[LSI]

DevSecOps in Kubernetes
by Wei Lien Dang and Ajmal Kohgadai

Copyright © 2021 O’Reilly Media. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://oreilly.com). For more infor‐
mation, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: John Devins
Development Editor Gary O’Brien
Production Editor: Daniel Elfanbaum
Copyeditor: Penelope Perkins

Proofreader: Christina Edwards
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

July 2021:  First Edition

Revision History for the First Edition
2021-07-22: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. DevSecOps in
Kubernetes, the cover image, and related trade dress are trademarks of O’Reilly
Media, Inc.

The views expressed in this work are those of the authors, and do not represent the
publisher’s views. While the publisher and the authors have used good faith efforts
to ensure that the information and instructions contained in this work are accurate,
the publisher and the authors disclaim all responsibility for errors or omissions,
including without limitation responsibility for damages resulting from the use of or
reliance on this work. Use of the information and instructions contained in this
work is at your own risk. If any code samples or other technology this work contains
or describes is subject to open source licenses or the intellectual property rights of
others, it is your responsibility to ensure that your use thereof complies with such
licenses and/or rights.

This work is part of a collaboration between O’Reilly and Red Hat. See our statement
of editorial independence.

http://oreilly.com
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence


Table of Contents

Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  vii

1. Software Development Life Cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1
The Value of Processes                                                                        1
DevOps                                                                                                  2
Kubernetes and the Software Development Life Cycle                  4
Summary                                                                                               5

2. Architectural Designs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7
Traditional Application Design                                                         8
Service-Oriented Architecture                                                         10
Cloud Native Design                                                                         12
Cloud Native Design with Kubernetes                                           16
Summary                                                                                             17

3. DevOps and DevSecOps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19
DevOps                                                                                                20
DevSecOps and Shifting Left                                                           26
DevSecOps with Kubernetes                                                            29
Summary                                                                                             30

4. Security and Requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33
Risk and Threat and Vulnerability                                                  34
Threat Modeling                                                                                37
Summary                                                                                             43

v



5. Managing Threats. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  45
Open Source Threat Intelligence                                                     46
Attack Phases                                                                                      48
Using an Attack Matrix                                                                     52
Summary                                                                                             55

6. Wrapping Up. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  57

vi | Table of Contents



Introduction

You know that security is important. And whether your system is
cloud native, has transitioned into the cloud with a traditional archi‐
tecture, or is just starting that journey, you know that the shift into
the cloud has made security more complex than ever. What’s more,
security is now everyone’s job.

For decades, software development and delivery were slow pro‐
cesses. Early enterprise software was delivered to customers by hand
and installed by a trained technician. Cloud providers have changed
all that, leveraging economies of scale to offer capabilities that many
organizations couldn’t achieve on their own and making it cheaper
and easier to use virtualization technologies.

Fortunately, as more application hosting is outsourced to cloud pro‐
viders, the resulting changes have brought design, development,
testing, deployment, and management teams closer together. That’s
important, because while virtualization offers fantastic opportunities
and capabilities, it also means there are many more moving pieces
than there used to be. To handle that, not only do you need solid
management capabilities—you also need automation.

In the cloud, automation is often referred to as orchestration,
because there is one piece in the middle that has to keep all the ele‐
ments in tempo and on key. Using a tool like Kubernetes to orches‐
trate the development, deployment, and runtime phases of
containerized applications can help immensely with automating and
scaling application delivery, but it’s not magic. You’ll still need to
bring together all of the groups involved in development, orchestra‐
tion, and deployment, because all of them will have different and
important insights. For example, when you introduce orchestration,

vii



that means development work is needed to create scripts and config‐
urations. Those will then need to be tested and, of course, the team
responsible for deployment needs to weigh in on whether they have
what they need.

It’s complicated, but with cultural change within your organization
and a shift in viewpoint, you can bring all the right people, perspec‐
tives, and insights together into a single team. That’s where DevOps
in general, and the DevSecOps model in particular, can help. Don’t
worry if you’re not sure what that means just yet. I’ll introduce you
to DevOps in Chapter 1, and by Chapter 3 we’ll be wading into Dev‐
SecOps. Along the way, we will be using Kubernetes as an example
of a technology that works well with a DevSecOps culture.

We’ll get into some of these cloud native technologies later on, but
there are two big aspects of cloud native that Kubernetes can sup‐
port. The first is automation. Kubernetes natively supports the auto‐
mation of all of your elements so deployment of applications is
easier and more manageable. On top of the automation, Kubernetes
brings abstraction. Software development has long tried to abstract
away from hardware as much as possible, and more granular levels
of virtualization in application development and management take
us much further away from the hardware. Kubernetes supports that
abstraction, allowing developers to focus on functionality without
needing to worry about how all the different components go
together.

If you only know one thing about DevSecOps right now, it should be
this: security isn’t the job of an isolated team. Security needs to be
baked into every step of the overall development life cycle and
owned by the development and operations teams as much as it is by
the security team. It takes work to identify the right tools, processes,
and requirements for your application design and implementation.
This report will walk you through the basics of how to do that, start‐
ing at the beginning with generating requirements and cascading
through the rest of the life cycle. Think of it as a first step toward
enhancing your security.

If your work touches or manages any part of the software develop‐
ment life cycle (SDLC), this report is for you. In the first half, we’ll
look at software development methodologies and architectural
designs, with a focus on how to integrate security measures into
these processes as a whole. Then, in the second half, we’ll dive into

viii | Introduction



DevSecOps and the art and science of embedding security into the
SDLC to identify and address threats. By the end of this report,
you’ll have a better understanding of how adopting the DevSecOps
mindset can make your team and organization stronger, more resil‐
ient, and more secure, from start to finish. Along the way, we will
look at how technologies like Kubernetes can be leveraged to better
enable DevSecOps philosophies and practices.

Introduction | ix





CHAPTER 1

Software Development Life Cycles

The problem with software development, as an intellectual activity,
is that you can’t manage development projects in the same way you
can other projects. With a project like building a house, adding
more people to the project (as long as they can operate construction
tools) can shorten the overall time it takes to complete the house. In
software development, the relationship between people and time to
complete is much more complex.

In this chapter, we’ll take a quick look at the origins of software
development. We will examine the process’s benefits and the essen‐
tial stages that any methodology must include. Then we’ll dive a
little deeper into the pros and cons of several of the most popular
methodologies.

The Value of Processes
Why bother with a methodology? Developers and project managers
have learned a lot since the early days of serious software develop‐
ment projects of the 1960s. They’ve created a variety of methodolo‐
gies to help get large-scale software projects (and even small ones)
done faster, more efficiently, and with higher quality. Sometimes the
new methodologies spring from a desire to solve a problem the
developer experienced with another methodology.

Different methodologies have different goals and different prob‐
lems. A methodology that works wonderfully for one organization

1



might be a bad fit for another. One thing is clear, though: having a
methodology is vital.

Repeatability and Consistency
One goal of any process or methodology is repeatability: you know
how to do it again. When you are building something to be sold,
you want consistency. You want to know that you’ve done every‐
thing as well as it can be done and in the same way as all the other
things, without variation. Variability can lead to defects, which will
of course make it more difficult to sell your product. In software,
defects are bugs, and no one wants to release buggy code. Consis‐
tency is one way to help limit the number of bugs that are in your
released software.

Process Improvement
With a process, you can evaluate how you’re doing something and
learn from how well it works. You can constantly improve your pro‐
cess to remove defects. (Some methodologies emphasize reducing
defects, such as Six Sigma.)

Focusing on process improvement is one of the hallmarks of a
mature organization. In Capability Maturity Model Integration, a
maturity model developed at Carnegie Mellon University, the high‐
est level of maturity an organization can reach is Optimizing. This is
where the organization has developed a process that it follows regu‐
larly and puts effort into learning lessons and improving that pro‐
cess over time.

There may not be as much concern for individual projects or even
very small projects getting repeatability, consistency, and process
improvement, but commercial organizations should be concerned
with these. Without the right methodology to help organizations
focus on these factors (or, worse, without any methodology at all),
the quality of the product is likely to be poor or inconsistent.

DevOps
Historically, there have been a lot of problems with software devel‐
opment methodologies. Long-standing methodologies like waterfall
result in long development times with limited communication. This

2 | Chapter 1: Software Development Life Cycles



can lead to high cost and low quality, which are not good results
from a software development process.

Communication problems are nothing new in software develop‐
ment. As companies move toward web applications and web-based
deployments, operations teams have become bigger stakeholders
than they have in the past. There are several great comics and graph‐
ics that highlight how software development used to happen before
DevOps became popular. These illustrations usually involve a devel‐
oper on one side of a wall tossing a software project over to the
other side of the wall where the operations person stands. There is
no communication and there may not even be much of anything in
the way of documentation.

DevOps is not so much a methodology, as it is a culture. The culture
of DevOps is meant to more tightly integrate the operations staff
with the development staff. The operations staff is meant to be there
through the requirements gathering to ensure they can deploy and
manage the application when it’s developed.

DevOps focuses a lot on automation and testing. The goal of
DevOps is to improve the overall quality of software development
processes by automating as many aspects of software development,
building, and deployment as possible. Many DevOps organizations
use something called a development pipeline, which means that
when software is checked in to the code repository, indicating the
developer has completed a task and they want to return the file to
the repository so someone else can use it, an automated process
starts to perform tests, build the software, and then perform more
testing. An approach like this means you can ensure the testing is
completed prior to deployment rather than rushing to deployment
while testing is done in parallel.

This is not to say that all tests can be automated. In some cases, the
testing team will still need to perform testing while deployment is
going on, but with short development cycles, any bugs that are
found can be resolved quickly and moved into production quickly.

All of this automation means that processes can be fully tested.
When you move to automation, you have another piece of software
that can be tested because the automation is a program or script.
This removes the human potential for error from the equation. The
automation programs or scripts can be fully tested to ensure they do

DevOps | 3



exactly what they are supposed to do prior to using them. Any
changes can similarly be tested prior to moving into production.

Kubernetes and the Software Development
Life Cycle
When developing software, whether it’s a complete application or
just an application programming interface that can be used by either
a web-based or mobile frontend, someone needs to be thinking
about the whole application life cycle—not just the part where the
developers are building software. Kubernetes can help support these
efforts. During the requirements gathering phase, a team may find
that the best way to support the overall goals of the project is to
implement Kubernetes. This will not only resolve some require‐
ments, potentially, but also introduce other requirements. Applica‐
tions are not usually fully formed out of the gate, but instead a
picture of what the application should be arises from an iterative
view of requirements. One requirement begets another requirement
and so forth until the entire view of the application or project is
complete.

When a development project commences, there is a requirements
phase during which a lot of decisions about the direction of the
project are made. This is where Kubernetes comes in, since it is best
to decide to select Kubernetes as the orchestration platform up
front. This will direct some of the development efforts since Kuber‐
netes was designed for containers. The developers and operations
staff know from the very beginning that they will be working with a
virtualized application environment. This also means additional
development is necessary, or at least a lot of communication is
required here since the operations team will be responsible for
deploying the project, which means they will probably also be
responsible for developing the orchestration scripts and configura‐
tions that will be managed through Kubernetes. This is where
DevOps and DevSecOps comes in handy as a practice, which we will
get into in more detail in Chapter 3.

One problem, historically, with testing has been that test environ‐
ments look different from development environments. Developers
write software on their systems, which are configured entirely differ‐
ently from test systems. Testing containerized applications can be
made considerably easier in a Kubernetes environment, since

4 | Chapter 1: Software Development Life Cycles



Kubernetes will help make sure every instance of the application
space looks the same every time. This means the testing team can be
working in exactly the same environments as the development team.
When you abstract away from the individual system and virtualize
the application, you get the benefit of the application running in an
isolated space with only the prerequisites and dependencies neces‐
sary for the proper functioning of that application.

Operations teams have spent years trying to make their lives easier,
first by writing scripts and creating frameworks to support large
numbers of physical systems, and then later doing the same for vir‐
tual machines and all the networking and other supporting infra‐
structure necessary for a complete and complex web-based
application. In both deployment and post-deployment, Kubernetes
supports operations teams by providing a management framework
that takes care of all orchestration that teams had to previously per‐
form manually due to a lack of knowledge or resources, including
provisioning of compute resources, storage, and networking, to
name a few.

Deciding to use Kubernetes can have a big, positive impact on the
overall development of an application from requirements through
deployment and operation of the application. It’s important to
ensure all team members are aware of the benefits and requirements
of the use of a tool like Kubernetes, though.

Summary
Software development is a complex task with a lot of people
involved in addition to the software developers themselves. Just
writing code is a complex endeavor. It helps to have a development
methodology to ensure the software that is developed is what the
business, the user, or the customer is looking for. As always, identify
the problem before identifying the solution.

There have been a lot of different development methodologies over
the years. In some cases, a development methodology is a philoso‐
phy or a culture as much as anything else. This is especially true
when it comes to DevOps. DevOps fits very well with modern soft‐
ware development practices, though it can be a challenge to imple‐
ment due to the strong focus on communication. For entrenched
development teams used to walls or silos constraining the different
teams, this can be a challenge that needs to be overcome. Focusing

Summary | 5



project management, development, testing, and operations around a
single platform like Kubernetes can help guide the necessary com‐
munication across teams because everyone is working in the same
direction on the same technology, which has not always been the
case with development teams.

Additionally, DevOps fits well with Kubernetes, which requires sup‐
port from all of the team members across the SDLC. Deciding to use
a tool like Kubernetes during the requirements/design phase of the
life cycle can introduce additional requirements but can also provide
a lot of answers to other team members like developers and testers,
which may make life easier and contribute to the overall quality of
the application.

Beyond this teaser, we will spend the rest of this book looking at
other practices within DevOps that will be beneficial for high-
quality application development.

6 | Chapter 1: Software Development Life Cycles



CHAPTER 2

Architectural Designs

Software applications are complex animals. There are a lot of com‐
ponents. When it comes to web-based applications, there may be a
lot of systems involved in addition to the elements that are software-
based. When companies develop web-based applications, they
become responsible for a lot more than just software development
since they also have to be concerned with the delivery platforms.
This is a significant change from developing native applications
(meaning applications that run directly on your desktop), where the
end user is responsible for the platforms the software runs on.

Traditionally, web-based applications have used something called an
n-tier design, which is a common approach to software develop‐
ment in general. Even in native applications, you can see the n-tier
design in use. For the last decade and more, though, there has been a
push to a different model in application development. With more
companies using cloud services to deliver applications, whether
specifically for delivery through a web browser or through a mobile
application with a web-based backend, there has been a shift to
service-oriented architecture. This shift has changed how applica‐
tions are delivered as well as how they are designed and developed.
It has also changed the security posture of web applications and how
they are managed and deployed.

In this chapter, we will look at some traditional application designs
as well as some more modern approaches to developing larger sys‐
tems and applications. These more modern approaches are espe‐
cially common with web applications, which we see taking over

7



native applications in many areas. Each design has some security
considerations and we’ll take a look at those too.

Traditional Application Design
An n-tier application design has multiple components that commu‐
nicate with one another in well-defined ways that you can think of
as levels or tiers. One common approach to n-tier application design
is the model-view-controller (MVC) design pattern. The model is
where data is stored and represented within the application. The
view is how that same data is presented to the user. This may be a
very different representation than the one used within the model
because the model has to make sense from a programmatic perspec‐
tive, while the view needs to be visual. That is, a user needs to be
able to look at it and know what is happening within the application.
The controller, finally, is the intermediate tier that takes the data out
of the model and transforms it (either coming out of the model or
going into the model). This tier is where business logic may exist
and it prevents the view from communicating directly with the
model. This allows you to create interface-agnostic programs. You
may end up with the same model for different types of applications,
for instance. The view may change but the model and the controller
can remain in place, as long as the interface (the calls to functions,
methods, and properties) remains the same between views.

A traditional web application uses something similar to this design
pattern. Rather than being called MVC, though, it may be called a
three-tier or n-tier design. This is because there may be multiple lay‐
ers, but they may not align nicely to the way MVC is described.
Figure 2-1 shows a traditional web application design, built for resil‐
ience. On the left side of the diagram is the user. You might think of
this as the presentation layer, where the output from the application
is displayed and any input from the user is accepted and sent back to
the rest of the application. The diagram shows the user communi‐
cating with the application through the internet. This may not be the
case in practice, though, since the application could be hosted
within an enterprise data center, with the user communicating over
the enterprise network. Either way, the user is sending traffic to a
network they are not directly connected to (their local network), no
matter who happens to own the network.

8 | Chapter 2: Architectural Designs



Figure 2-1. Traditional web application

Inside the application there may be multiple networks. A tiered net‐
work design is generally preferred because it theoretically makes it
harder for an attacker to get deeper into the application where more
sensitive data is stored. In the center of Figure 2-1, you’ll see a load
balancer. This is done not only for resilience, but also to more easily
handle a large load. The load balancer’s job is simple: it accepts net‐
work requests and funnels them to a set of defined servers. There is
almost no processing involved at all. The servers, though, have to do
some work handling the requests so they can get busy from the per‐
spective of processor utilization. This is less common with much
faster processors today than were available even a decade ago, but
application design may still follow this pattern.

Behind the web server, which serves up any static content and sends
dynamic requests on, is the application server. This is where the
business logic lives. The application server may be a .NET server
that can run programs written in any of the .NET languages, such as
VB.NET or C#. It’s also common to use Java-based web application
servers like JBoss, Oracle WebLogic, and Apache Tomcat. The appli‐
cation server handles all dynamic requests where programmatic
processing is needed. Input from the user is handled by the applica‐
tion, and any response back to the user is generated, primarily, by
the application server.

The application server also manages the interface with the database
server, which you can think of as the model in the MVC approach to
application design. Traditionally, the database server has been a rela‐
tional database, where data is stored in rows and columns in tables.

Traditional Application Design | 9



The columns define the properties in the table while the rows are
collections of the instances of the properties. They are called rela‐
tional databases because each table may be related to another table
because one column in each of these tables may contain the same
data. This is how you can have complex data sets without making
each table too complex or unwieldy.

In practice, the traditional architecture requires an individual sys‐
tem for each of the tiers. In fact, there may be multiple systems at
each tier, as shown in Figure 2-1, where three web servers sit behind
the load balancer. At one point, this was done with physical systems,
but more recently, it is usually done with virtual machines. A virtual
machine is a system that is defined by software: there is a piece of
software that intercepts all of the requests from the operating system
that would normally go to the hardware. The guest operating system
has no idea there is a piece of intermediate software acting as though
it were hardware. This allows you to have multiple “systems” run‐
ning on top of a single operating system, saving you the cost of
hardware and other support costs.

All of this additional overhead from the operating system to all the
supporting applications needed requires work. You may need people
who manage the operating system and all that entails (updates,
patches, configuration, etc.). You may need people who manage the
applications. Ideally, every system that is deployed, whether virtual
or physical, has been hardened, meaning it has been configured in
such a way that it is difficult for attackers to compromise from the
outside. All of this work and the people it requires is one reason
companies are moving away from traditional application design,
especially for cloud deployments.

Service-Oriented Architecture
In the traditional design just discussed, applications are composed
of multiple services that are working together: you have a web
server, an application server, and a database server. All of these
servers, whether they are physical or virtual, are really just services
that expose an interface to the rest of the network to interact with as
needed. If you deconstruct each of these servers to the functions
they provide underneath, you end up with a lot of services within
the application. A traditional application has a central processing
node, like the application server. In a service-oriented architecture,

10 | Chapter 2: Architectural Designs



everything is more exposed. Figure 2-2 shows a simple diagram of
what that might look like.

Figure 2-2. Service-oriented design

In a service-oriented design, there is a central means of communica‐
tion called a service bus. Messages are put on the bus and the bus
takes care of getting each message to the right service to be con‐
sumed. For example, if you want to call an authentication function
from the profile service, you just put the message (basically, the
method call including the name and any parameters the method
might need) onto the bus and the bus takes care of calling it. The
response to the method call also gets put onto the bus and it gets
returned to the correct calling party.

You may be wondering why this is a useful way of designing things,
since we’re just calling functions/methods and getting responses
from them. This is just how programming normally works. The dif‐
ference with this design is that the bus can manage services spread
out across multiple systems. You are no longer constrained by hav‐
ing to have a monolithic application design with all the components
on one system. You are also not constrained by sometimes needing
to use cumbersome remote application services like remote method
invocation (RMI) or remote procedure calls (RPCs). The service bus
is a different piece of software that does all the communication
management.

In theory, you could use a service-oriented architecture inside a tra‐
ditional application design. Your application server could host the
service-oriented architecture behind the scenes, while still exposing

Service-Oriented Architecture | 11



the traditional application server interface to the rest of the world.
Calls to the application would get passed to the service bus and han‐
dled by the different methods that are connected to the bus.

In practice, the service-oriented architecture becomes an API. The
entire application can be managed from outside the application
internals by simply calling the different methods available. This
opens the door to something called microservices. Without the need
to have a monolithic software application, the application can be
deconstructed into individual pieces that other components or serv‐
ices may interact with in different ways. This can mean you end
up with multiple applications, as functionality is put together in
different ways. No longer does a single entity control the flow of the
application.

Service-oriented architecture can also help to enforce a program‐
ming practice called design by contract, where each method or func‐
tion within the overall application space has a set of expectations
that must be met (the contract) before it can be called. If you have
arbitrary entities calling methods within the application space, it
may be essential to have those contracts in place. If the contract isn’t
met, meaning the preconditions aren’t in place as defined by the
function or method, the call to the function or method will fail. This
helps to drive better programming behavior by ensuring only “cor‐
rect” data is sent into functions. This reduces the burden on the
function so it can focus on what it’s supposed to do without having
to make sure the data passed in falls within acceptable bounds.

Once you start to deconstruct the application, you no longer need so
many servers. Nor do you care about traditional design where every
service has a physical or virtual server. The only thing you care
about is the individual components of the application, meaning the
functions or methods that comprise the interface to the application.

Cloud Native Design
Cloud native design builds on top of the move away from the tradi‐
tional monolithic applications each having their own server
approach that service-oriented architecture takes. Cloud native
design takes advantage of that decoupling of traditional services and
servers. It uses virtualized deployments, but rather than virtualizing
an entire system, it virtualizes an application. From a security

12 | Chapter 2: Architectural Designs



perspective, this is a good thing. Before we get there, though, let’s
take a look at what containers look like.

Figure 2-3 shows a diagram of containers. At the very bottom is all
of the infrastructure required to make any computer system run—
power, hardware, networking, etc. Above that is the operating sys‐
tem that runs on top of the hardware. The next layer is the container
software, which takes care of all of the application virtualization,
meaning it manages the interactions between the application and
the operating system.

Figure 2-3. Container design

The way this works is by tagging memory in the actual operating
system. The containerized application lives in this tagged space and
can only read or write to memory that has the same tag. It is up to
the operating system to enforce this control. This means the con‐
tainerized application and anything within that space can’t commu‐
nicate with the operating system memory space. It also can’t interact
with the memory of any other application. This design has benefits
for security: any attacker who manages to compromise an applica‐
tion that has been containerized would get access to just the space of
that application. If they managed to get interactive access to the
space the application resides in (typically called shell access because
the part of an operating environment the user interacts with is called
the shell), they could not get to the underlying operating system.
They would get a very limited view of files and processes running.
This is not to say that containers are a perfect solution; vulnerabili‐
ties in the container software could allow more access than theory
would suggest.

Cloud Native Design | 13



Another great thing about virtualized applications is that they are
very easy and quick to start up. Starting up a containerized applica‐
tion can be so fast that it can be started in response to a user request,
exist only so long as the request is being processed, and then go
away. If the request was from an attacker who had managed to com‐
promise the virtualized application, the access to that container
would go away. Even if the attacker were able to maintain access to
the container, it would exist only to serve the attacker—no other
requests would go through that container so the attacker would have
access to almost nothing.

You can take this virtualization a step further, and some cloud pro‐
viders have. If you are building your own application, you are going
to construct it from a number of functions or methods written by
application developers. The application development team doesn’t
care about anything other than the function they are writing. Why
not virtualize the function itself so it only exists as long as it is being
called? At that point, there really is nothing underneath the function
(in theory) that could be compromised in any way. You get a small
chunk of memory that belongs to the function, just like a function
would get a stack frame in a native application.

You can develop applications using these techniques using cloud
providers. Providers such as Microsoft Azure, Google Cloud Plat‐
form (GCP), and Amazon Web Services (AWS) all have serverless
functions that can be used to develop and deploy an application.
This can make life a lot easier from the perspective of the security
professionals as well as the system administration team.

Management Considerations
Once you start decoupling functions from applications and applica‐
tions from servers, meaning the application no longer lives within a
single application server space, you have a lot of moving pieces to
manage. This is also true when you are talking about large-scale
applications where the different application servers, such as the web
server, application server, or even the database server, are run from
inside a container. Suddenly, you have a lot of virtualization possi‐
bilities and a lot of different pieces that need to be managed.

As mentioned earlier, once you start virtualizing applications and
even functions, you have a lot to juggle. Application virtualization
speeds up deployment, which means you can easily design your

14 | Chapter 2: Architectural Designs



applications to make use of this speed. You can respond very quickly
to load, meaning volume of requests, by standing up individual
instances of the virtual components on an as-needed basis.

Alongside this capability, though, is the problem of maintaining the
application content and configuration. You need the ability to easily
manage the life cycle of each virtualized application. Content within
a web server’s space, for instance, may change. If the content is
stored inside a container, any update to the content requires tearing
the container down and replacing it. Similarly, if the application
changes, you need to be able to take down all the containers that are
running it when you update the application. After all, one advantage
of using web-based applications is the control you have over the ver‐
sion that has been deployed. If you can’t manage the lifetimes of the
containers running your code, you start to have less control over
your application and the version being presented to users, which
leads to inconsistent behaviors within the application and poten‐
tially disgruntled users.

A common container runtime implementation is Docker. Docker
provides the interface between the operating system and the applica‐
tion being virtualized. It will run on common operating systems like
Linux and Windows. While you can develop your own applications
and containerize them within Docker, you might also take advan‐
tage of the Docker Hub registry, which stores implementations of a
number of common applications. Docker will automatically down‐
load the latest for you, initialize it, and then run the application.

While you can definitely make use of Docker, containerd, or CRI-O
to manage containers, you may find you need another piece of soft‐
ware to manage the deployment and configuration of the containers.
Another software platform, such as Kubernetes, can make this pro‐
cess easier because in addition to providing a container implementa‐
tion, it also provides a complete orchestration system to manage the
deployment and life cycle of the containers. Google initially devel‐
oped Kubernetes in 2014. It provides extensive capabilities for man‐
aging containerized applications across the entire life cycle of the
container. This includes the abilities to schedule instances and man‐
age the images being executed.

When you have extensive management capabilities of containers,
you get access to just about everything cloud providers offer. You
can better manage your application and all of the components.

Cloud Native Design | 15



When managed well, containerization can reduce the foothold an
attacker can have within your application. There is a class of attack‐
ers called advanced persistent threats and their objective is to get
access to your environment, essentially taking up residence in your
systems, potentially for years. The incident response company Man‐
diant releases a report each year called M-Trends with a break out of
the percentage of investigations each year where the attacker has
been in place for multiple years. Each year there is a small percent‐
age where the duration of residence has been more than five years.

Cloud Native Design with Kubernetes
As mentioned earlier, cloud native design uses virtualization as an
important foundation. However, cloud native design is about far
more than just virtualization or even using a microservice model for
component design. Cloud native design is as much about being
responsive to user demand as anything else. This is the sort of prob‐
lem Kubernetes has been built for. When you move to a design
where the application itself is containerized, you increase the
responsiveness of the application. The application, or instances of it,
can start up very quickly because it doesn’t require an entire operat‐
ing system to start up first. Once this becomes a reality, there are
other possibilities.

One of the challenges with any application is upgrades. Whether the
upgrade is to software that is underlying the application, like the
operating system or any dependencies, or whether it’s the applica‐
tion software itself, Kubernetes will take care of ensuring the latest
software is in place for any instance of the application or its compo‐
nents. In the case of a microservices model, where there are multiple
components that each require their own virtualized space, there are
a lot of moving pieces and a lot of dependencies. Kubernetes can
take care of replacing instances of each microservice, without any
services-consuming users being aware that the replacement is hap‐
pening. Any instance that is in use can be swapped out as soon as it
falls out of use.

Because Kubernetes is capable of turning on instances of an applica‐
tion component or microservice quickly, it makes a great platform
to enable rapid scaling. Kubernetes can ensure new instances
of application components are in place as they are needed based
on user demand. In the case of cloud computing with a service

16 | Chapter 2: Architectural Designs



provider, where you pay as you go, enabling services as they are
needed saves a lot of money. Before containerization, massive mar‐
keting events like advertising during the Super Bowl for instance,
would require a lot of work ahead of time. New physical systems or
virtual machines would have to be built and then added to whatever
load-balancing strategy was in place. This would need to be done
well before the event because of the time required to perform all that
work. In today’s world, as long as you have created the application
with the right components, such as using Kubernetes for the orches‐
tration management, you can scale to demand without any addi‐
tional work.

Summary
Cloud native design removes a lot of the constraints that were
imposed by a traditional n-tier design, opening the door to more
resilient and responsive application architectures. Using cloud
native design, the same backend application can support both a web
interface using a client’s browser as well as a mobile application
where the interface runs on a phone or tablet, while still using the
application programming interface exposed by the backend applica‐
tion to drive the functionality of the mobile application.

Selecting an orchestration management platform like Kubernetes
can make using a cloud native application design easier because you
are in a better position to scale to demand. Kubernetes can take a lot
of the heavy lifting because it’s designed to be able to support this
application scaling without additional work on the part of the devel‐
opers to manage resources.

Summary | 17





CHAPTER 3

DevOps and DevSecOps

While there are probably a lot of other reasons for the value, impor‐
tance, and uptake of DevOps and DevSecOps, a significant one is
the rise of web applications. When you start to deliver applications
using the web, the way you structure your development process
starts to change, because deployment can be (and often is) done
much faster than the traditional approach, which can take months.
Once your deployment cadence starts speeding up, there is a burden
on the operations team to support that deployment—after all, it’s
your operations team that has to handle the deployment now, since
the customer is no longer performing the installation.

DevOps has become a much more prevalent set of practices over
time, as operations teams continue to get more say in the overall
development process. There are advantages for others as well using
DevOps. From a business perspective, of course, there is the poten‐
tial to reduce overall costs. From the perspective of the development
team, there is the potential to increase overall quality across the life
cycle of the product being developed.

DevSecOps is another set of practices that is gaining a lot of trac‐
tion, again driven by development shops focused on web application
development. It is simplistic, though, to say that DevSecOps is just a
question of inserting security into the existing DevOps culture. As
security itself is as much a culture as anything else, it’s not as simple
as just saying “we do security with all the other stuff.” DevSecOps is
about practices that introduce security throughout the entire devel‐
opment life cycle.

19



This chapter will cover what DevOps is, as well as how it differs
from DevSecOps. It will also cover the cultural changes that may
be required to introduce or support these philosophies within an
organization.

DevOps
There is an old saying that you can pick only two of the following
traits: good, fast, and cheap. You can’t have all three. The idea is that
if you go the route of fast and good, it will be expensive. If you try
good and cheap, it will take time to get it delivered. Fast and cheap
will yield poor quality. At least, this has always been the thinking.
Without commenting on cheap, because there is so much more
involved in determining overall cost, DevOps is focused heavily on
being good and fast. This does not necessarily bring cost along with
it. One way you get to good and fast is to automate as much as possi‐
ble. It’s easy enough to see how this will get you fast, because auto‐
mation should be much faster than having a human do the task. It
may be harder to see how you get to good. We can investigate that in
more detail as we keep discussing the benefits of DevOps.

DevOps cultures may be built around tools or toolchains. As you
might expect from the name, the toolchain starts with the develop‐
ment part of the SDLC, rather than the earlier stages of require‐
ments and design. DevOps cultures focus a lot around automation.
The development stage, from a tooling perspective, is much less
about the actual development (meaning the tooling isn’t in the edi‐
tors or development environments being used) than it is about the
source code repository, where the source code is managed between
multiple developers. There is intelligence required in managing the
files to make sure one developer doesn’t overwrite changes made by
another developer.

Older source code management or versioning solutions might
require a developer to check out a file before making any changes.
This would in effect lock the file so no other developer could check
it out. There was a version that was stored on a server somewhere
and that was the version of record. While this is essentially still true
in modern source code management solutions, for reasons you’ll see
shortly, more control is put into the hands of developers and it
becomes more of a distributed process.

20 | Chapter 3: DevOps and DevSecOps



For example, if two developers, Jon and Tom, are working on a soft‐
ware project using a commonly used modern source code manage‐
ment solution like Git, they can both be working on the same source
code file at the same time. This works because, if the project is well-
managed, Jon and Tom will not be working on the same lines of
code at the same time. Instead, they will be making changes to dif‐
ferent sections of the file. When they are both done with their
changes and have fully tested what they have done, they will push
their changes up to the master repository. Let’s say Jon pushes first.
When Tom pushes his changes, the Git software will tell him there is
a set of changes already in place that he doesn’t have. He will then be
able to merge his changes with the changes already in place in the
master repository. Figure 3-1 shows a collection of folders and files
managed using the public repository GitHub.

Figure 3-1. GitHub repository

Once the changes to the source code have been committed to the
master repository, the software can be built. This is the process of
taking the source code and compiling it to a form that is native to a
computer’s processor. Not all software needs to be compiled. Some
will remain in its original, source code form. This is the case for lan‐
guages that are interpreted, such as Python or JavaScript. In the case
of an interpreted language, a build is a run through the source code
to ensure there are no failures that result from the recent changes.
This is similar to a compilation in the sense of looking for syntax
errors, but it does not result in an executable as a compilation
process does.

DevOps | 21



This build or construction step can be done automatically. If devel‐
opers are trustworthy, the whole check-in process can be automated
to the extent that once conflicts are merged the server may be able to
push all the changes into the current branch of the software, ready
for building and testing. Once the build has been completed and all
files and components are in place, testing can also be automated.
One way to do this is to ensure test cases are written alongside any
functional development. If you are adding functionality to the soft‐
ware, you need to develop a test case that will validate that function‐
ality. This should include a small function that will implement that
test case. These test cases can then be executed to validate the soft‐
ware performs as expected.

In addition to these functional tests that are written by developers,
test engineers will also write test cases that can be executed in an
automated fashion. One advantage of automated testing is that the
pass/fail results can be easily charted to show where you are in terms
of the health of the software development. Both build failures and
test failures can result in alerts to interested parties, as well as be
reported on a dashboard that shows green/red health status, giving
project managers or business leaders an instant read-out of the state
of the software.

Once the software has been built, checking for syntax errors that
may cause problems with the user experience later, and then tested,
it can be deployed. This may require pulling all the necessary files
into a package that can be installed. It could also be as simple as just
copying files into place. In many cases, the application may be man‐
aged not just as application files but also systems. A deployment
plan may include instructions on how to build up components,
which may be virtual machines or containers.

This is where a system like Kubernetes can help by managing the
overall application build and deployment process. You may have
multiple containers that include different aspects of the overall
application. Kubernetes can take the build instructions and create
containers that house all the application components.

All of this automation is how a company like Etsy does 50 deploy‐
ments per day. This speed of development and deployment has some
obvious advantages—bugs don’t live in production very long
because rapid development and deployment replaces them very
quickly with corrected code. You can also introduce new features

22 | Chapter 3: DevOps and DevSecOps



quickly without having to wait for longer development cycles to cre‐
ate a complete package. A new feature can be developed and
deployed while other features are being developed alongside. You
need solid orchestration throughout your tool set to be successful in
a DevOps world, but you reap the benefits by always being able to
respond to user demands and market requirements.

Cultural Change
As I’ve said, DevOps is a culture. It requires everyone on the project
team to buy into how the application is being developed. Two
important elements of the DevOps culture are testing at all levels
and automation. Automation requires that processes be written
down. Once you’ve written a process down so it can be automated,
typically in a script of some sort, that process or script can be tested.
This requires someone to have at least sketched out the process to
the point where some code can be written. This can be difficult for
some teams who prefer to operate in an ad hoc fashion. Ad hoc is
the enemy of quality, since you’re never sure what is going to be
done or how it’s going to be done. Just getting people on board with
having to document processes so they can be automated can be chal‐
lenging. However, once a process has been automated, that automa‐
tion can be tested. Does it do what it’s supposed to do? At the same
time, using automation, you get both speed and quality. The quality
comes from the consistency and repeatability of the tests, while the
speed comes from not requiring a human to do the task.

Some developers are used to monolithic builds of software. DevOps
tends to focus on smaller components that work together, typically
using Agile development processes. Again, containerization sup‐
ports this. One great aspect of approaching development and
deployment from this perspective is that changes can be incremental
rather than universal. You may just need to redeploy one container
to make a change to the overall application rather than having to
build and redeploy the entire system, as would be the case with a
monolithic approach to software development.

One other aspect of a DevOps approach is the speed. Traditional
development practices are much slower. They also don’t include the
level of communication expected or required from DevOps. The
speed of a DevOps environment means coordination is critical.
Changes require communication, which means silos need to be bro‐
ken down. Developers need to talk to operations team members.

DevOps | 23



Additionally, developers need to talk to testers. Testers need to pro‐
vide feedback to developers to ensure necessary changes are made to
increase the overall quality of the solution. A communication tool
like Slack can be helpful. It enables not only direct communication
between individuals but also group conversations as well as other
capabilities that can enable collaboration.

The lack of silos in DevOps can be one of the biggest challenges to
overcome, since traditional software development has been more
siloed. Fortunately, teams that have at least started the move toward
Agile development may have started to break down some of those
silos.

Critical Roles
With an increased focus on speed and quality, automation is essen‐
tial. This means engineers who have scripting capabilities are essen‐
tial to the software development team. Automation tasks run across
almost all aspects of the development life cycle, including software
builds and testing, as mentioned earlier. On top of that, though,
there is an increased focus on automating system builds. Each appli‐
cation component may require its own space to operate in, which
may be a virtual machine or a virtualized application, housed in a
container. In either case, the application will have some require‐
ments that need to be in place to operate correctly. You may start
from a base virtual machine with just the operating system or you
could have an empty container. In either case, you need some help
getting your individual components built up correctly.

Again, this is where selecting tools can help out. However, you also
need to make sure you are matching your tools to your people.
Kubernetes can help with a lot of your system management automa‐
tion across the lifetime of the application, but you need to make sure
you have people on staff who can correctly manage Kubernetes. Just
having a tool in place doesn’t help if you don’t have the right people
to manage it.

Another important element of DevOps is testing because quality is
such a focus of the DevOps philosophy and you can get to higher
quality with a solid testing strategy. Testing should start at the very
beginning of the development process with the developers, which is
another of those cultural things since developers are not often
trained to write tests or test cases. Skilled test engineers will be

24 | Chapter 3: DevOps and DevSecOps



essential. They will either need to be able to automate their own tests
or work closely with automation engineers to do the automation.

This is not to say that all testing has to be automated, but speed of
deployment relies on that automation. Any testing that has to be
done manually may happen post-deployment. This has long been a
common approach in software development, especially when it
comes to security testing. The advantage to the DevOps model is
that issues that have been identified during post-deployment testing
can be resolved quickly.

Cattle and Pets
Not all systems or containers are created equal. This is the idea
behind the cattle versus pets analogy that you will often hear in
DevOps circles. People who talk about this have likely never spoken
with farmers or ranchers, but the fundamental principle is that you
treat pets differently than you treat cattle or livestock. You expect to
have a pet for a long time and so you take good care of that pet. Cat‐
tle are considered expendable and you may not care as much about
cattle as you do your cat or dog.

Applied to an application deployment model, pets are the essential
elements of the application that need to always be available and can’t
be easily stood up or torn down. You have standing infrastructure
that is carefully managed. The idea with a pet, or a standing system,
is that you would name the pet, as you would perhaps provide a
meaningful name to a permanent system. You don’t just tear down
an infrastructure system, just as you wouldn’t discard a pet to
replace it whenever something changed.

Cattle on the other hand don’t get named (again, the people who
came up with this analogy may have never met farmers or ranchers)
in any meaningful way. Cattle are also expendable. If you lose one
head of cattle, you replace it with another head of cattle. Applying
this to the application deployment space, you may have a lot of vir‐
tualized components that are easy to stand up and tear down as
needed.

Again, tools are helpful here to be able to manage life cycles in an
appropriate manner. You need to be able to distinguish your pets
from your cattle in your application setup. Some components of
your application may need to be set up as permanent. Others are not
permanent and are built up on an as-needed basis. Some DevOps

DevOps | 25



proponents may argue that your entire application should be devel‐
oped as though you are working with cattle. Keep in mind that when
you are working in an outsourced model like you are when using
cloud provider infrastructure, you are paying for every minute a sys‐
tem is up and using resources. If you can develop your application
so components are instantiated only when they are needed, you can
save yourself some money.

This does require that you have something in place that can quickly
instantiate components. It also requires that the components be
designed for quick deployment. This means making design deci‐
sions upfront so that each element is as streamlined as possible.
Remember that any time spent bringing systems online to respond
to a user request is time the user is waiting for that request to be
fulfilled.

DevSecOps and Shifting Left
Take everything you have learned about DevOps now and add in
security. Sounds easy, right? Well, security is a culture too. As much
as anything else, security is a culture. Technology does not solve
security problems. People solve security problems. If it were all
about technology, firewalls everywhere would keep constant data
breaches from happening. However, that’s not the case. This means
that to get to DevSecOps, you need to not just add security people,
you need to imbue your entire team with security awareness and
practices.

DevSecOps has to start at the very beginning of the software devel‐
opment life cycle, shown in Figure 3-2. Traditionally, security wasn’t
even an element of software development. Decades ago, systems
were protected by the fact that only a limited number of people
would ever touch the software. Then, suddenly, everything was con‐
nected and systems and applications were reachable by others who
didn’t have the best of intentions. Protecting people and their per‐
sonal data, as well as information belonging to a business like intel‐
lectual property, is very slowly becoming more of a priority, which
means software development has to change to reduce the ability to
misuse software.

26 | Chapter 3: DevOps and DevSecOps



Figure 3-2. Software development life cycle

Shifting left means introducing security as far to the left in the soft‐
ware development process as possible. Look at Figure 3-2 and imag‐
ine how you might introduce security into each phase of the
software development process, keeping in mind these are the essen‐
tial elements of software development projects and not tied to any
specific methodology. Following are some ways that you could con‐
sider introducing security into the development process.

Requirements
The best place to introduce security is in the requirements
phase. There are significant cost increases to fixing problems in
later phases. There may be a number of ways of addressing
security in the requirements phase but a simple one is threat
modeling, and then ensuring that the threats identified have
mitigations in place.

Design/development
The same threats identified in the requirements should be kept
in mind during the design and development phase. Designing
how the product is going to operate should not introduce new
threats, while also limiting the impact of existing threats that
couldn’t be removed. Additionally, developers should always be
following secure programming practices that are specific to the
language they are using. This may include using techniques like
style guides to ensure all developers are writing code in a similar
way, which may reduce vulnerabilities while also making the
source code easier to read and fix later on. Additionally, in cases
where developers are expected to write test cases, they should be
trained to write misuse cases and test against those so their soft‐
ware is more resistant to bad or malformed data being passed
through functions they write.

Testing
All requirements should be addressed during testing, but specif‐
ically any threat mitigation identified in the requirements phase
should be tested to ensure the mitigation is in place and works.
This is definitely a case where misuse and boundaries should be

DevSecOps and Shifting Left | 27



tested. Data should be introduced that would violate the specifi‐
cations to ensure any application failure is safe, meaning it
doesn’t present an attacker with the opportunity to manipulate
the program space or introduce and run code.

Deployment
The deployment phase may be one of the most critical, espe‐
cially in the case of web applications or any application that is
hosted in a network environment. All systems and containers
that are deployed should be hardened, meaning unnecessary
software or services should be removed and all access require‐
ments reviewed and tightly controlled. The goal of deployment
should always be to limit the attack surface, meaning the ability
of an attacker to see any service from either the internet or
within the network space controlled by the deployment team.

While we talk about shifting left, the reality is that in pushing back‐
wards through the development life cycle, security should be intro‐
duced into each of those phases. Ideally, you’d start with the
requirements phase but in cases where you have well-entrenched
development processes and teams, dropping security into the early
phases may be challenging. Again, you are making large cultural
changes and people will likely resist them. It may be easier to slowly
push your way backward from the far right, ensuring that at least
security testing is done, then slowly introducing secure program‐
ming practices to the developers, and then trying to introduce threat
modeling during the requirements phase. It’s worth noting that
security will typically require specialized staff, and you may not be
able to find a single person who understands security from the per‐
spective of all phases, so you’ll be adding additional bodies to your
development team.

Security professionals may balk at a DevOps/DevSecOps model.
They sometimes feel that the speed of development and deployment
will sacrifice security. The reality is the speed ends up helping over‐
all security of the application since security bugs can be fixed and
updated software deployed much faster. Additionally, moving
toward a deployment model where everything is virtualized can also
help security. As mentioned previously, in cases where systems
are up permanently, attackers can take up permanent residence in
them. If you have systems that are more fluid, such as a container
model where applications are virtualized and there is very little else
exposed to an attacker, even if an attacker gets access to an

28 | Chapter 3: DevOps and DevSecOps



application, when that container is shut down—because it’s not
needed or an update has been deployed so the existing container is
removed and a new instance spun up in its place—the attacker has
to start all over in compromising the application.

DevSecOps with Kubernetes
As much as anything else, the move to DevOps/DevSecOps is about
getting humans out of the middle of processes that are simply better
handled by software. Once you get a human out of the equation, you
get rid of errors caused by mistakes, typos, no process, jumping
ahead of instructions, or any number of other problems that
humans are prone to. This is not to say that all errors are caused by
humans and that automation removes all errors. After all, if there
are errors in the instructions provided to the automation system,
you will just keep having the software make the same mistake over
and over and over.

Along with automation comes consistency, of course. You develop a
plan you want your orchestration system to take care of for you, you
test it to make sure it is doing what you expect, and then you let
your orchestration system keep taking care of it over and over and
over—exactly the same way, every time, until you change what you
want done.

Fortunately, this is where Kubernetes excels. There are lots of ways
to implement automation including a lot of Infrastructure as Code
(IaC) software such as Ansible, Puppet, Chef, and Terraform. Once
you start moving to a container-based model, however, the addi‐
tional complexity presented by those software platforms may not be
necessary. IaC is about building up systems and deploying software
onto systems where the IaC software is managing the platform. If
you are using containers, you can skip system builds because you
aren’t using systems: you are using containers, which don’t necessar‐
ily require IaC systems. Rather, the container management system
manages the definition of the container, including the application
that will reside in the container as well as all the dependencies
needed for that application to run successfully.

Reducing complexity is usually a good thing, especially when it
comes to security. The fewer software components running, espe‐
cially from a management perspective, the smaller the attack surface
that can be compromised. Additionally, it means there are fewer

DevSecOps with Kubernetes | 29



things that can go wrong, which means there is less potential for sys‐
tem or application failures. A failure often means the service is
unavailable to a user. While you can still use all the IaC software you
like if that’s the preference of your DevOps engineers, it is not
strictly necessary for a Kubernetes implementation if Kubernetes is
used extensively for the application development and deployment.

Another job of operations staff is often monitoring the application
for performance, load, and health. Kubernetes takes care of this,
making life easier for operations staff. Kubernetes will keep an eye
on all the containers under its care to ensure they are behaving as
expected, replacing containers as needed or adding additional con‐
tainers to support the overall health of the application.

With Kubernetes taking care of a lot of concerns that operations
staff typically have, the entire development team can focus on what’s
important—making sure the application supports user needs—
rather than spending a lot of time addressing the needs of the opera‐
tions staff to efficiently support the application. As with so many
other things, letting another system take care of the low-level tasks
in order to focus on what’s most important is a good idea.

Summary
Introducing DevOps to an existing development shop can require a
significant change in culture. It can take a lot of work to ensure all
team members are on board with the differences since the focus of
development shifts to speed and quality. The speed change alone can
be jarring to some development teams. Getting to speed and quality
requires a lot of automation. This is also a significant change for
some development teams, who may rely on either ad hoc or strictly
manual processes. Moving to automation requires formalization
of processes since you can’t automate an ad hoc process. But not all
developers or engineers like to sit down and clearly define what
they do.

Similarly, security is a culture shift. Security is often seen as some‐
one else’s problem. The best approach to security is to ensure appli‐
cations are developed in a way that makes them resistant to attack
from outside. This requires introducing security in the requirements
phase, where security becomes part of the job of everyone in every
phase through the remainder of the software development life cycle.

30 | Chapter 3: DevOps and DevSecOps



Tools are essential to automation. You need to make sure you are
selecting tool sets that will support development from the source
code repository, through the build process, testing, and deployment.
You should also consider how you are deploying your applications.
Are you using pets—machines, virtual or physical, that you keep
and maintain on a persistent basis? Or are you using cattle, where
nothing is sacred and everything can be virtualized, meaning you
can remove it as needed? Selecting a management and orchestration
platform such as Kubernetes can help the process of moving from
pets to cattle and guaranteeing consistency across your deployment.

Keeping security in mind throughout the life cycle can be challeng‐
ing but also beneficial. Security professionals should keep an open
mind to the possibilities of a DevOps/DevSecOps model. There are
a lot of advantages in being resilient to attack with regular and con‐
sistent updates to an application as well as automation of testing and
deployment. Finally, any deployment model where no component
has much of a lifespan, because everything has been containerized
and is constantly being instantiated afresh, will make an attacker’s
life difficult.

Kubernetes again makes a great complement to a DevOps/DevSec‐
Ops practice because it allows the automation that is essential for
operations staff as well as helping to ensure the latest updates to
software and dependencies are implemented, which is good for the
overall security and health of the application. Using a tool like
Kubernetes can help to shift the focus from operating the low-level
aspects of the application to focusing on the user-oriented aspects of
the application to improve the overall user experience.

Summary | 31





CHAPTER 4

Security and Requirements

The best place to start introducing security into the systems devel‐
opment process is in the requirements gathering stage. While we’ve
been referring to software development so far, it’s really systems
development because when it comes to web applications or even
backends to mobile applications, we aren’t talking about a single
software package any longer. We are talking about multiple compo‐
nents that are installed either on virtual machines or in virtual
containers. This effectively makes it systems development, even if
the purpose of the full system is to deploy and provide access to
applications.

When approaching systems development security, it’s really easy to
panic and be afraid of everything. The best approach is not to try to
address every problem that may potentially arise, particularly if it’s
very unlikely for that situation to happen. The best approach is to
follow good practices in hardening deployments and secure pro‐
gramming, but also to think rationally about threats that may
remain. Even following the best hardening and secure programming
practices will leave an exposure to attack simply because there will
always be ways for an attacker to get in. The moment there is a pro‐
gram running, that program can be misused. For this reason, some
technology providers, such as Microsoft, espouse the principle of
“assume breach,” where you’re operating under a tacit assumption
that there has already been a breach, and your job is to find it and
stop it from spreading.

33



One way to improve the overall quality and security posture of any
systems development project is to start with a threat modeling exer‐
cise. The purpose of threat modeling is to identify areas that may be
misused by an attacker. Once these areas have been identified, you
can develop requirements to either remove the potential threat or
you can focus on mitigating the threat, meaning you are attempting
to minimize the potential impact that could result from the threat
being actualized.

This chapter will go deeper into how you can extract security
requirements, primarily by looking at threats. Once you have identi‐
fied threats, you can translate the mitigation of those threats into
requirements.

Risk and Threat and Vulnerability
Software development organizations may regularly talk about risk,
but often when you hear risk in the context of a software project or a
systems project, the risk has to do with the timing of a release,
meaning are we going to hit the promised release date or not. In one
sense, this misuses the term. The concept of risk is often poorly
understood across the information technology community, which
leads to the word being used incorrectly.

Let’s start with a clear definition of risk. Risk is the exposure to loss,
based on the likelihood of an event occurring. In other words, when
you say there is a risk of rain today, you are really only talking about
half of a risk calculation. You are talking about a high likelihood,
perhaps. What you are missing is the loss. What loss are you going
to incur if it rains today? If you are hosting an outdoor event where
people have paid a lot of money for tickets and you have spent a lot
of money on preparation, rain may require you to refund the tickets,
while still being out the costs of preparation. There is a loss there.
When you factor in the high likelihood of rain, meaning a high like‐
lihood of that loss occurring, you have a high risk. You’d need
to know how much money you were going to be out (assuming
there was no chance of rescheduling the event) to determine the
actual risk.

There are two types of risk assessment. The first, and preferable,
type (though it’s harder to achieve) is quantitative. This means you
assign numeric values to the likelihood (probability) and the loss
(typically expressed in a monetary unit like dollars), and you’ll get a

34 | Chapter 4: Security and Requirements



number out. Some people find this very hard because they either
haven’t looked for or can’t determine the likelihood value and may
find it difficult to assign an actual monetary value to the loss. This
quantitative approach is commonly expressed as multiplying the
annual rate of occurrence, which is an expression of probability
meaning the number of times a year an event can be expected to
occur, by the single loss expectancy (a monetary value indicating the
amount that would be lost if the event occurred). You end up with
an annualized loss expectancy. This is a numeric value you can
assign to any given event to be able to assess the risk of that event
versus any other event.

Because they find it difficult to assign values to probability and loss,
people often follow the second type of risk assessment, a qualitative
approach. For example, they may use T-shirt sizing—small,
medium, large, and extra large—to scope both the probability and
the impact. You then take the T-shirt size for both of those factors
and end up with a new T-shirt size—still small, medium, large, or
extra large—that you assign to an event. You can then use these T-
shirt sizes to compare the risk of one event to another event.

The reason for comparing the risk of one event to that of another is
that resources in any situation are limited; you can’t address or
remediate every risk. This means you should prioritize high-risk
events. It also means you need to take a rational approach to evalu‐
ating risk. Humans have a tendency to catastrophize. They think an
event with a high impact (loss potential) is a high risk, even if the
probability is extremely low. Think about flying in an airplane, for
instance. Some people will say it’s a high-risk event because they can
imagine the traumatic experience of the plane coming apart in the
air, an event that results in death, and perhaps a very painful and
scary death. The reality is that the probability of that event happen‐
ing is extremely low, but people can’t get the scariness out of their
heads so it “feels” like a high-risk activity.

This brings us to understanding threats. Risk assessments can be
tedious activities if you are trying to evaluate the risk of every poten‐
tial event, even those that are highly unlikely. As mentioned earlier,
businesses have finite resources, and it is more rational to focus on
events that are more likely to happen. If you think about a bell
curve, such as the one in Figure 4-1, with high probability/low
impact events on one tail and high impact/low probability events on
the other tail, you want to focus on the events that are going to be in

Risk and Threat and Vulnerability | 35



the middle of the bell curve because that’s where you are likely to
incur losses.

Figure 4-1. Risk bell curve

Finding those events in the middle of the bell curve comes down to
identifying threats. Because we are limited by our own imaginations
—focusing only on threats we may be immediately aware of since we
can’t easily imagine events we don’t have any exposure to—threat
modeling may not be an easy activity. This is where it can be helpful
to have a framework in which to identify threats. We’ll look at some
common threat-modeling frameworks later on, but we should start
by clearly defining what a threat is. A threat is a potential negative
event that may result from a vulnerability being exploited.

A vulnerability, by extension, is a weakness in a system or piece of
software. People can exploit vulnerabilities by triggering them.
However, exploiting a vulnerability is not necessarily a malicious
action. In fact, it’s probably helpful not to think strictly of actions
that are malicious in nature. While malicious actions are bad, you
can also have serious problems that result from actions that are sim‐
ply errors or even mistakes. For example, with the right set of factors
in place, a mistake can easily lead to a serious and prolonged outage.
This, again, is why it can be helpful to have a framework to use for
identifying threats.

36 | Chapter 4: Security and Requirements



Threat Modeling
As mentioned previously, there are several threat-modeling frame‐
works that are used in systems or software development. While
these frameworks are not necessarily perfect in determining threats,
they can help you to focus on what is most troubling. Of course,
once you have identified threats, you still need to know what to do
about mitigating or removing them. It takes some practice and
knowledge to be able to identify both threats and mitigations to
threats. As you will see in the following discussion, some frame‐
works are going to be better than others depending on how your
organization thinks about threats. You can also mix and match
the different threat modeling approaches instead of using one
exclusively.

It’s important to note here that the goal of a threat model is not to
eliminate threats. In any system or software application that inter‐
acts with users, especially remote users, it’s not possible to eliminate
threats. The goal of developing a threat model is to better under‐
stand the interactions within complex systems to find areas where
you can limit either the impact or likelihood of a threat manifesting.
Ideally, you reduce the overall risk resulting from these threats to a
level the business is comfortable with. We’re going to take a look at
three commonly used threat-modeling frameworks: STRIDE,
DREAD, and PASTA.

One important element of risk that isn’t included in the
previous definition is the need to be informed. Busi‐
nesses regularly make decisions based on risk assess‐
ments. It’s not possible to make an informed decision if
the risk is not clearly understood or even identified.
Pretending a risk doesn’t exist, incorrectly identifying
likelihood or impact, or simply not assessing the risk at
all means the business has not made an informed
decision.

STRIDE
STRIDE, a model introduced by Microsoft in 1999, is a commonly
used approach to assessing threats, especially within software devel‐
opment processes. It’s based on a set of threat categories identified
by the developers of this methodology. The following categories,

Threat Modeling | 37



which form the STRIDE acronym, help to better identify problem
areas within a complex system:

Spoofing
Spoofing is an attempt by one entity to falsify data in order to
pretend to be another entity. This may be one user pretending
to be another user, or it may be one system, in the form of an IP
address for instance, pretending to be another system. Spoofing
can impact confidentiality or integrity in any system. One way
to protect against spoofing is strong authentication and data
verification.

Tampering
Integrity is one of the three essential security properties—confi‐
dentiality, integrity, and availability. Tampering is when data is
altered, meaning it has lost its integrity, since it is not in the
same state when it is retrieved as it was the last time it was
stored. Tampering attacks can be remediated with strong verifi‐
cation using techniques like machine authentication codes.

Repudiation
Repudiation is any entity being able to say it didn’t perform an
action. An example is someone writing a check then later saying
that they didn’t write the check, even though their signature
appears on the check. As signatures can be falsified, without
witnesses it may be impossible to say with certainty who wrote
out and signed the check. Any action that can’t be clearly
assigned to an entity may violate the concept of non-
repudiation.

Information disclosure
A privacy breach or inadvertent leak of data is an information
disclosure violation. The use of encryption can be one way to
protect against information disclosure, but it’s not a perfect sol‐
ution since keys can be stolen and used to decrypt information,
resulting in a disclosure. Encryption without appropriate key
management is not sufficient to protect against information
disclosure.

Denial of service
Anytime an application or service is unavailable to a user when
the user expects it to be available is a denial of service. The same
is true when a user expects to be able to get to data and that data

38 | Chapter 4: Security and Requirements



is unavailable. These types of attacks can’t always be protected
against since some of them are simply outside the control of the
system developer. However, ensuring applications are resistant
to crashing is a good start.

Elevation of privilege
Attackers who manage to get control of a running process will
have the level of permission or privilege assigned to the user
that owns that process. Commonly, this is a low level of access,
which means the attacker is often going to attempt to obtain
elevated or escalated privileges so they can do more on the sys‐
tem they have compromised. Any ability to move from a low
level of privilege to a higher level of privilege is privilege escala‐
tion, also called elevation of privilege. By always using the prin‐
ciple of least privilege, that is, never giving any user or process
more permissions than it needs to perform essential tasks, you
can help protect against privilege escalations.

Having an understanding of these categories helps to shape your
threat-modeling actions, but sometimes you need some additional
support. Microsoft offers a Threat Modeling Tool, which allows you
to diagram your application, including defining all interactions
between your components and how those interactions may be
implemented. You can see an example diagram in Figure 4-2, which
is a sample that comes with the Threat Modeling Tool. Once you
have diagrammed and defined your solution, the tool will automati‐
cally generate a report of threats for you.

Figure 4-2. Threat Modeling Tool diagram

Threat Modeling | 39



The tool follows the STRIDE model in developing the list of threats,
so you will find threats identified with the categories discussed ear‐
lier. Figure 4-2 includes threats like Potential Data Repudiation by
OS Process, Potential Process Crash, Weak Access Control for a
Resource, and Spoofing the OS Process. One advantage of the
Threat Modeling Tool is that it not only identifies potential threats
for you, but also provides the means to manage those threats by
either redesigning the system and running the tool again or by doc‐
umenting mitigations that may be implemented to reduce the likeli‐
hood or impact of the threat being actualized.

DREAD
DREAD was initially proposed as a threat-modeling methodology,
but in fact, it probably works better for risk assessment and can be
used in conjunction with STRIDE. Once you have identified your
threats, you can run each one through the DREAD model to help
clearly identify risks that may result from them. One way of imple‐
menting this for quantitative assessment is to give a rating of 1 to 10
for each category. You’ll end up with a numeric value to assign to
each threat, which can help you better derive risk. One problem
with this approach, as is the case with risk assessment in general, is
that it is subjective without hard data, such as previous experience.
Just as with STRIDE, DREAD is an acronym for the categories laid
out in the following:

Damage
If an event happened, how bad would the damage be?

Reproducibility
How easy is it for this event to occur, meaning what is the level
of effort or level of difficulty involved in making this event
occur? Reproducibility may be much higher if there is a widely
available proof of concept or exploit available, as it requires
nothing but the ability of the attacker to find the exploit.

Exploitability
Exploitability may seem the same as reproducibility but there
are subtle differences between whether an attack can be repro‐
duced and how exploitable it is. Let’s say it’s easy to reproduce
the attack, but in each run through you get a different result.
Not all of the attack attempts end up giving the attacker access
to the system. Sometimes, the application under attack just ends

40 | Chapter 4: Security and Requirements



up shrugging off the attack. Other times, the attacker gets con‐
trol of the process space. Exploitability may be low in this case
while reproducibility is high.

Affected Users
How many users are going to be impacted? You may also factor
in the type of user who is impacted. Let’s say customers can get
access to the application but the application can’t be managed by
the operations team, for instance. You may want to factor in the
level of the user and rank users by how important it is for them
to get access.

Discoverability
How easy is it to discover that the exploit is possible? As before,
this may be a function of whether details about the vulnerability
and exploit are available publicly.

As you can see, there can be a lot of subjectivity in each of these cat‐
egories. Microsoft used this model for a period of time but it is no
longer in use there. Some of the categories here are similar to those
used by the Common Vulnerabilities Scoring System (CVSS), which
uses a set of factors to generate a severity score for a known vulnera‐
bility. This can help you make decisions about whether to remediate
the vulnerability quickly or whether the remediation can wait.
DREAD can be used in the same way: it’s another data point that can
be used to determine what to do about a threat that has been identi‐
fied. You can use the same DREAD model for vulnerability assess‐
ment once a vulnerability has been identified.

PASTA
PASTA is the Process for Attack Simulation and Threat Analysis,
and rather than being a threat model in the way STRIDE is, it is a
process that can be used to identify threats and mitigations for them.
PASTA is a seven-step process:

1. Define objectives
As always, it’s better to clearly define the problem before look‐
ing for a solution. Rather than trying to tackle everything at
once, this step clearly defines what is in scope for this assess‐
ment. You may choose to look only at critical assets or critical
data sources, for instance. You may also define the tools and
testing methods in this step.

Threat Modeling | 41



2. Define technical scope
Complex systems have a lot of dependencies, so it may be essen‐
tial to clearly define the technical scope to limit the inquiry. You
don’t want to be digging into libraries, for instance, that are out
of your control. You may want to limit yourself to only one part
of the system rather than the entire system.

3. Decomposition and analysis of application
This is where you start drilling into the way the application or
system is composed. This may be similar to what was done ear‐
lier for the Microsoft Threat Modeling Tool. You define the
individual components or elements and also identify trust
boundaries. This is where data may move from outside the
application to inside the application, for instance. This means
you are moving from an untrustworthy zone (where the user
lives) to a trustworthy zone (where the application controls the
data and developers may assume the data has been sanitized—
not a good assumption as a general rule, but an example of why
you might say one zone is trustworthy).

4. Threat analysis
Based on intelligence sources, assess the known threats. For
example, you may use components that have known vulnerabil‐
ities and there may be exploits for those vulnerabilities, or you
may be exposed to common known vulnerabilities because of
development practices used.

5. Attack/exploit enumeration and modeling
In this stage, you use an attack tree to model what an attack
might look like and how it may operate. An attack tree is a way
of diagramming a process with decision points or options along
the way. You may make different decisions about how you han‐
dle an attack based on the path through the model. An example
of an attack tree is shown in Figure 4-3.

42 | Chapter 4: Security and Requirements



Figure 4-3. Attack tree diagram

6. Analyze modeling and simulation
Once you have created your attack trees, you can start to under‐
stand the potential for damage from the attack. This is done by
running simulations of the attack and determining its likeli‐
hood.

7. Risk and impact assessment
Once you have identified the likelihood, you should also assess
the impact based on a successful execution of the attack, and
then determine the risk. Based on all the data that has been col‐
lected, you should be determining what controls you can put in
place to mitigate the risk from the potential attack.

You’ll see that PASTA is a very detailed approach to threat assess‐
ment and there is nothing here that would necessarily prevent you
from folding in other approaches. You could use STRIDE as you are
looking for attacks and exploits by looking for places where infor‐
mation disclosure is possible, for instance. You might also use
DREAD as you are doing the risk and impact assessment to give you
a broader view of the aspects of the attack that may impact the
system.

Summary
You always need to have a starting point when you are developing
something. You need to define the problem before you start working
on the solution. If you don’t, how do you know if your solution fits
the problem? Without a clear definition, you have a solution in
search of a problem, which is not a great way to try to sell or market
anything. The same is true when it comes to addressing security for

Summary | 43



any system or application. You need to know what it is you are pro‐
tecting against, since you can’t protect against everything. A good
place to start is by identifying threats, which will help you better
identify potential mitigations to address those threats. Once you
know what threats you face, you can start to generate requirements
based on the threats identified.

The problem then becomes how to identify threats. There are some
methodologies that can be used, including the STRIDE methodol‐
ogy, which identifies six categories of threats: spoofing, tampering,
repudiation, information disclosure, denial of service, and elevation
of privilege. As you are assessing your system or software, you
should be looking for places where your application may introduce
the potential for an incident in one of these categories.

Another framework to help better understand the impact from a
threat that has been identified is DREAD. Using DREAD, you look
at damage, reproducibility, exploitability, affected users, and discov‐
erability. Assessing the questions associated with these factors will
help you get a better understanding of the overall risk associated
with a threat because they will give you a deeper insight into the
probability and loss that might result from a threat being actualized.

While STRIDE provides a set of categories, PASTA offers a process.
PASTA is the Process for Attack Simulation and Threat Analysis. It
is a highly structured approach to identifying threats and their
impact and likelihood. To implement PASTA, you need to be able to
deconstruct the application, identifying trust zones and how data
passes through the different components. Once you have run
through the PASTA process, you can still identify categories using
STRIDE and help understand the risk using DREAD.

44 | Chapter 4: Security and Requirements



CHAPTER 5

Managing Threats

One of the problems that system or application developers contend
with is complexity. Any application that does anything of signifi‐
cance is going to be complex because of the sheer number of poten‐
tial pathways through the application. Once you start moving to a
web application deployment model, you may have multiple systems
in place, which adds additional complexity. You now have systems
with operating systems and applications and services. Even if you
are using a cloud native design, you have to deal with virtualized
services that may be coming and going. Versioning is a concern
because different container instances may have different versions of
an application running in them.

All of this is to say that software has to face a lot of potential prob‐
lems. It all starts with threats—any potential problem or failure that
may beset an application, piece of software, or system. This may
simply be a result of all the complexity. There is also a possibility of
bad data being introduced to a program, causing a failure. That bad
data may be a result of a malicious action.

Just having threat information is insufficient. You need to know
what you are going to do about these threats. There will always be
threats that you won’t be able to do anything about, but it’s best to
clearly understand the threat so you can make an informed decision
about possible mitigations. Of course, in the case of systems or
application development, all of these mitigations should be fed into
the requirements process.

45



This chapter will discuss ways of gathering more information about
threats as well as taxonomies you can use to better understand their
impact. Finally, we’ll talk about using a threat matrix to map threats
to mitigations and priorities.

Open Source Threat Intelligence
Threat intelligence is available from a number of sources. The easi‐
est way to get up-to-date threat intelligence is by purchasing a com‐
mercial service. That’s not the only way, though. There are places to
get threat intelligence for free. One of these is by signing up with an
Information Sharing and Analysis Center (ISAC). ISACs are gener‐
ally organized around industries. For example, there is a financial
services ISAC (FS-ISAC) as well as an information technology ISAC
(IT-ISAC). The purpose of these organizations is to provide a safe
place where people in the same industry can talk about issues.

Threat intelligence can take many forms. Typically, what security
professionals are looking for will be indicators of compromise
(IoCs). These are pieces of data that will identify when an attacker is
trying to gain access to an account or network. This may be some‐
thing like an internet address, a domain name, or a cryptographic
hash that could identify the location of an attacker or a piece of
known malware. In the case of software or systems development,
those are less likely to be useful since the objective isn’t to find an
attacker in a network or system. Instead, you want to know how
attackers behave. This will help identify how they may try to misuse
a piece of software or a system. What we are looking for are tactics,
techniques, and procedures (TTPs).

Fortunately, there are a lot of sources of TTPs, which are the actions
attackers take. One of the challenges with TTPs is there can be a lot
of them. Having a place to store them in order to search through
them easily is helpful. In a security operations organization, this
would be a security information and event management (SIEM) sys‐
tem. There are several pieces of software that can do the log collec‐
tion and analysis for you. One of them is the Open Source Threat
Intelligence and Sharing Platform, formerly known as the Malware
Information Sharing Program, and still called MISP.

MISP will consume threat intelligence feeds in different formats. It
then organizes all the information so it can be searched. Figure 5-1
shows the MISP interface. The overlay you see in the figure is a

46 | Chapter 5: Managing Threats



quick look at the data available about the Babuk ransomware (ran‐
somware is misspelled in the data feed).

Figure 5-1. MISP output

Once you have added some feeds to MISP, you can start browsing
through updated details about how attackers operate. Some of this
information won’t be useful. You may not care, as a systems or soft‐
ware developer, about ransomware operators, for instance. You’ll
find a lot of different categories available, including tools and threat
actors. You will also find entries for attack patterns. For example,
Figure 5-2 shows details on attack patterns for the threat group
APT28, sometimes called Fancy Bear. This threat actor uses techni‐
ques such as a run key in the registry to achieve persistence, which
allows the attacker to keep malicious software running across
reboots of the system.

It will take a lot of digging, but you can get a lot of detail about how
attackers operate by reading through threat intelligence feeds. There
are some benefits to using threat intelligence feeds even beyond
what you might use for threat modeling exercises. For a start, these
feeds will show you the importance of introducing security into your
products as early as possible in the development life cycle simply
because of the ways attackers can misuse any potential vulnerability
in software. Even if your software isn’t remote in any way, meaning
there are no network listeners, there is the potential for attackers to
get additional permissions by using your software.

Open Source Threat Intelligence | 47



Figure 5-2. APT28 details

Attack Phases
Before we get into determining threats to any system or software,
you need to be able to categorize how those attacks may work. There
are two good ways of thinking about this. The first, which is the
more comprehensive, is the MITRE ATT&CK Framework. The sec‐
ond, used by the security consulting company Mandiant, widely
known for its incident response expertise and based on decades of
observing how attackers operate, is the attack life cycle.

MITRE ATT&CK Framework
The MITRE Corporation has a history of developing information
categorization strategies that benefit the industry at large. In recent
years, MITRE has looked to develop a taxonomy of attacks, which is
broken down into categories, or phases, of attacker activity. How‐
ever, this is not simply a list of phases that attackers will go through.
The ATT&CK Framework is also a database of known TTPs. The
following are the phases of the framework, including some of the
TTPs used by attackers:

48 | Chapter 5: Managing Threats



Reconnaissance
The first thing an attacker is going to do is scout for targets, and
then look for information about their target. This may include
gathering information about systems, people, or financial data.
This may come through using open source information that can
happen without the victim ever knowing, or it could come from
scanning victim networks to gather details, which is likely to be
noisier and more prone to detection.

Resource development
In this phase, the attacker is preparing to attack. They may be
gathering account information from available sources. This
could include preparing for credential stuffing exercises by
gathering known usernames as well as a large collection of pass‐
words that are known to be used commonly. This may also
include acquiring systems, either legally or illegally, that will be
used to attack from.

Initial access
The initial access phase is where the attacker starts compromis‐
ing systems. This may come through phishing messages or by
introducing malware in websites that are known to be used. It
may also come through the use of removable media like USB
sticks left around or even delivered to users. In cases of targeted
attacks, the social engineering messages sent to users are called
spear phishing. This is because these users are identified specifi‐
cally, rather than the attacker sending out as many messages as
possible to get as many people as they can regardless of what
company a user works at.

Persistence
Gaining initial access is not enough because at some point the
user will log out or the system will be rebooted. The attacker
will want to be able to persist their remote access means across
reboots and login/logout cycles. This may be done through reg‐
istry keys on Windows systems or scheduled tasks on any oper‐
ating system. It could also include malicious software that
executes before the operating system boots.

Privilege escalation
If a security organization is doing its job well, the permissions of
normal users at a company will be restricted, and an attacker
who compromises a user account won’t be able to do much.

Attack Phases | 49



Instead, the attacker needs to get elevated or escalated permis‐
sions to be able to do things like extract passwords from mem‐
ory. This may involve taking advantage of software
vulnerabilities to get additional permissions.

Defense evasion
Most companies will have some sort of protection capability in
place, even if it’s basic anti-malware software. Attackers have to
perform some trickery to get past this detection software. They
may obfuscate what they are doing by encrypting data or encod‐
ing it in some way. They may also use techniques like alternate
data streams in Windows to hide data where some detection
software won’t look for it.

Credential access
Attackers are going to want to move around within a network,
from system to system, to search for information or more
access. They may do this by extracting additional usernames
and passwords from disks and memory on systems they have
already compromised or by performing network attacks against
repositories of this information.

Discovery
In the process of looking for information they may want,
whether it’s intellectual property or personal information that
can be monetized, attackers will be looking for additional sys‐
tems and services that may contain that information. This infor‐
mation may come from searching through the history on a
system, including hostnames that are visited by a user.

Lateral movement
Lateral movement is the process of hopping from one system to
another within an environment. This may be accomplished by
further phishing from a compromised user to an uncompro‐
mised user or from session hijacking, where an existing connec‐
tion to a service is hijacked by the attacker to gain access to the
service for themselves.

Collection
This is the process of data collection. This could be data that can
be used to further compromise the system, or it may be data
that could be useful to the attacker—intellectual property, credit
card information, personal information, etc.

50 | Chapter 5: Managing Threats



Command and control
The attacker needs to be able to manage the compromised sys‐
tem remotely. After all, the attacker isn’t sitting on the physical
network, and it may not be possible to connect individually to a
compromised system. It may be easier for the attacker to config‐
ure the compromised system to connect out to a remote system,
which will issue commands to the victim system. These man‐
agement systems are usually referred to as command and con‐
trol (C2) systems.

Exfiltration
The attacker will need to be able to retrieve the data that they
have collected. There are a lot of ways this may happen, depend‐
ing on what protections are in place. For example, attackers may
push data out of a network by embedding it into well-known
protocols, since those are the ones that are most likely to be
allowed out through firewalls and other forms of protection.

Impact
Attackers aren’t only looking for information to steal. Some‐
times they also want to manipulate or destroy data—or even
wipe the system. This may have been the goal all along, or it
may just be a result of getting caught in the act and then
attempting to destroy as much as possible on the way out, per‐
haps in part to obscure their actions.

As before, there is a lot here and not all of it is going to be useful to
your situation. However, this framework will add ideas to your
arsenal as you start thinking about all the ways your system or soft‐
ware may be attacked.

Attack Life Cycle
Just creating a list of the different TTPs attackers may use is not suf‐
ficient. You need to know what phase of an attack the attacker is in.
This will influence not only the sense of urgency with which you
should act, but knowing the different phases of an attack also will
help you map out what action you should take. An attack life cycle is
not a structured methodology in the way MITRE’s is. Instead, it’s a
way of thinking about how attackers operate in the real world. The
attack life cycle shown in Figure 5-3 is commonly used by the inci‐
dent response company Mandiant in its approach to investigations.
This diagram shows all of the stages an attacker goes through from

Attack Phases | 51



reconnaissance to completing the mission. This is based on years of
observations of how attackers work. If you go back to well-known
infiltrations from the 1970s and 1980s even, including those by
Kevin Mitnick and the Chaos Computer Club, you can easily map
them into this attack life cycle.

Figure 5-3. Attack life cycle

The difference between this and the MITRE ATT&CK Framework
is that the attack life cycle is more targeted. The ATT&CK Frame‐
work is a taxonomy, while the attack life cycle is meant to describe
how attackers operate in the real world. One advantage to the attack
life cycle is that it clearly illustrates the cycle or loop that happens
once attackers are in the environment. This cycle is suggested in the
ATT&CK Framework, but since that framework is focused on cata‐
loging TTPs, it’s not as clear what actually happens. The attack life
cycle allows you to visualize it.

Using an Attack Matrix
Now that we know how attackers operate and what they do, what
can we do? Once you have been through a threat modeling exercise
to identify all the potential threats to your software system, you can
start mapping those into the phases of either the ATT&CK Frame‐
work or the attack life cycle, depending on which makes more sense
to you. The threat modeling exercise, whether it’s using STRIDE or
another threat modeling methodology, is going to create a list of all
of the possible threats to your system or application—or at least a
list of all the threats you are able to identify. Remember that threat
identification requires some skill, some experience, and some imagi‐
nation. Each of those threats should be categorized into one of the
attacker phases so you can better visualize how the attacks based on
those threats will happen and when they would be used.

52 | Chapter 5: Managing Threats



We can use an example attack matrix developed by Microsoft to
describe the potential threats to a Kubernetes installation. A portion
of the attack matrix is shown in Figure 5-4. There are other threats
that were identified but as this is used for the purposes of explana‐
tion, there is no reason to get exhaustive about these threats. We will
be able to use the threats here to demonstrate how you would use
the threat matrix as part of a DevSecOps environment. The com‐
pany StackRox (now part of Red Hat), which specializes in Kuber‐
netes security, has provided some guidance on how to better protect
your Kubernetes implementation based on this threat matrix. Stack‐
Rox took the analysis Microsoft did and provided some detail
around how you can mitigate the threats that were identified. How‐
ever, we are going to take a different look at how to use the threat
matrix and derive requirements from it.

Figure 5-4. Kubernetes attack matrix

Let’s take one of these threats as an example and talk about how you
can generate some requirements based on it. An easy one is an
exposed dashboard. Keep in mind that not all threats are going to be
introduced by an application under development; they can encom‐
pass any application, platform, or management software you may be
using to support the application or system. In the abbreviated
matrix shown in Figure 5-4, an exposed dashboard would fall under
misconfiguration. The requirement for the exposed dashboard
threat is the Kubernetes dashboard will not be available/exposed to
any unknown system or network. This means we need to make sure
the Kubernetes dashboard, which is being used to monitor and
manage all of the virtualization within the application, is only acces‐
sible from known network devices. Additionally, the Kubernetes
dashboard should only be accessible to authorized users who have

Using an Attack Matrix | 53



been authenticated using multifactor authentication and have
appropriate roles assigned.

You may notice this set of requirements does not define the imple‐
mentation. The requirements then cascade through the rest of the
systems development life cycle. From a design perspective, the
Kubernetes dashboard may be placed in the virtual network in a
location that isn’t accessible. You may implement network security
groups that limit access to known Internet Protocol (IP) address
blocks. Additionally, you would need to design the appropriate iden‐
tity and access management that would allow you to force multifac‐
tor authentication on users. You will also need appropriate
procedures in place to ensure that provisioned users should have
access to the dashboard.

Beyond the design phase, we need to introduce requirements to the
testing phase as well. The testing group should be fed this require‐
ment. They should test to ensure that in the completed application,
the dashboard is not exposed and cannot be accessed from
unknown network segments. They should also test to ensure multi‐
factor authentication is required for all users. There isn’t much they
can do in the way of testing to ensure that only appropriate users get
access. That’s up to someone else later in the process.

The deployment phase also has to be factored in. The deployment
team needs to ensure the application is deployed based on specifica‐
tions. In this case, since we are using Kubernetes, there will be auto‐
mation in place to manage the deployment. Once you start
automating, you can validate the script or configuration that dictates
the deployment and test the script to ensure it behaves as expected
and the results match the requirements.

The National Institute of Standards and Technology (NIST) pro‐
vides a lot of guidance for federal agencies regarding information
security. NIST’s Cybersecurity Framework (CSF) breaks out security
operations into the following phases: identify, protect, detect,
respond, and recover. These are useful to consider when developing
applications and deploying systems.

So far, we’ve been focused on protection, but there’s a lot more to
security than just expecting that you will be able to prevent all
attacks from happening. In many cases, you may find that attack
traffic will look like legitimate usage. This is the case where the
Kubernetes dashboard is exposed. An attack leveraging a public

54 | Chapter 5: Managing Threats



exposure of the Kubernetes dashboard will use the same web-based
requests that authorized users are making. The difference is they will
be coming from networks that don’t belong to the organization that
owns the application. This is something we can monitor post-
deployment.

One problem with deployment is that it can drift. People make
changes to running systems that alter configurations and behaviors.
Once you get through deployment, you need to manage and main‐
tain the application. This should always require monitoring. You can
monitor access to the Kubernetes dashboard, as in the example
threat under consideration, and throw up an alert if there is success‐
ful access from an unexpected address. Similarly, you can monitor
for any successful access that doesn’t use multifactor authentication.

While this is a single example using a very simple threat that’s easy
to manage, you can see how the process would work. It can be time
consuming, but by using this process, you can get better at generat‐
ing requirements that not only cover the extent of the software
development life cycle, but also can be used to help detect attacks
against the system or application, which will make the application
more resilient to attack.

Summary
Attackers continue to be prolific, which helps generate a lot of infor‐
mation about how they operate. This can be extremely useful if you
are following a threat-based approach to application security. One
problem with using threat modeling is that it requires either a lot of
experience or a lot of information about how attackers operate.
Identifying threats is not an easy task. They don’t just fall out of a
book or the existing requirements. You need to know a lot of TTPs
so you can inform your idea of what a threat is.

Fortunately, there are open source threat intelligence tools that can
help you expand your imagination and develop a list of threats.
Once you have a list of threats, you need to categorize them using a
taxonomy like the MITRE ATT&CK Framework or the attack life
cycle to help you prioritize them. There are problems that are within
your control and problems outside of your control. You may find
that identified threats in the exfiltration phase may not fall under
your control and may not be anything you need to worry about.

Summary | 55



Once you have categorized your list of threats, you can start to gen‐
erate requirements. You should think about requirements across all
phases of the software development life cycle. Threats may be miti‐
gated in the design/development phases but those mitigations
should be tested to ensure they work. Additionally, some threats
may be mitigated in the deployment phase. Threats should always be
followed all the way through from design to deployment.

You should also consider requirements that may be necessary
beyond deployment. After all, not every attack is going to look
abnormal. In fact, you may consider the idea that most attacks are
probably going to look normal since it’s common to attack applica‐
tions using the protocols and data they speak and understand. This
means you should consider the phases of the NIST CSF: identify,
protect, detect, respond, and recover. You aren’t going to be able to
protect everything. You need to be able to detect when bad things
happen that couldn’t be protected against.

Knowing TTPs across all phases of an attack life cycle can help you
better identify threats to your system or application. This, in
turn, can help you better define requirements that are more
comprehensive.

56 | Chapter 5: Managing Threats



CHAPTER 6

Wrapping Up

Moving to DevOps or DevSecOps can be a considerable cultural
shift. Moving to the cloud can be an enormous change as well, espe‐
cially if you are trying to adopt cloud native approaches rather than
just a lift and shift, where you outsource your existing infrastructure
and systems to a cloud provider. Following are some considerations
as you are thinking about migrating to DevOps/DevSecOps:

1. Make sure you have the right team members in place. This is
especially true if you are going to a cloud native design using
virtualized applications rather than virtualized systems. The
deployment is very different.

2. Select the right tools. If you are going to virtualized applications
rather than systems, make sure you have a solid orchestration
and management platform in place. This may be something like
Kubernetes, which can manage the entire life cycle of virtualized
applications.

3. Automate as much as possible. Automation is testable, which
helps ensure you are using the right process. This can also help
you scale your application in case of surges in requests.

4. Verify everything. Attackers will go after the source code and
even the toolchains. Automation is great for most things, but
you also need humans to validate that the right things are hap‐
pening (e.g., the right source code has been checked in) and the
right tools are in place. The SolarWinds compromise has shown

57



that tools are just as capable of introducing malicious source
code into the build as replacing source code directly.

5. Introduce security as early as possible. Attacker activity has con‐
tinued to increase in recent years. Ensuring you are thinking
about security early will help to prevent a lot of pain later on
and also cost significantly less money. Embed security in the
developer workflows and provide developers with guardrails to
shift security left.

6. Identify threats. Use a threat-modeling practice to identify
threats to the overall application or system design.

7. Develop requirements based on the threats. Do not assume that
the only place to mitigate threats is in the software develop‐
ment. System design needs to be taken into consideration as
well. Deployment should also be following requirements to
ensure a hardened, protected application in production.

8. Test requirements. Make sure all of the requirements that are
generated end up as test cases and are verified before deploy‐
ment. Because testing can be time consuming when done man‐
ually, this is another case where automation can be beneficial.

9. Consider that not all threats may be preventable. Make sure you
are generating requirements that follow the NIST CSF so you
are at least considering prevention and detection. Work with the
security operations staff to make sure they can respond to
threats that have been detected.

58 | Chapter 6: Wrapping Up



About the Authors
Wei Lien Dang is senior director of product and marketing for Red 
Hat® Advanced Cluster Security for Kubernetes. He was previously 
a cofounder at StackRox prior to its acquisition by Red Hat. He 
was also Head of Product at CoreOS and held senior product 
management roles for security and cloud infrastructure at 
Amazon Web Services, Splunk, and Bracket Computing. He was 
also part of the investment team at the venture capital firm 
Andreessen Horowitz. Wei Lien holds an MBA with high 
distinction from Harvard Business School and a BS in applied 
physics with honors from Caltech.

Ajmal Kohgadai is principal product marketing manager for Red 
Hat Advanced Cluster Security for Kubernetes. Prior to its acquisi‐
tion by Red Hat, he was the Director of Product Marketing and 
Growth at StackRox, and previously held senior product marketing 
roles at McAfee and Skyhigh Networks (acquired by McAfee).


	Cover
	StackRox/Red Hat
	Copyright
	Table of Contents
	Introduction
	Chapter 1. Software Development Life Cycles
	The Value of Processes
	Repeatability and Consistency
	Process Improvement

	DevOps
	Kubernetes and the Software Development Life Cycle
	Summary

	Chapter 2. Architectural Designs
	Traditional Application Design
	Service-Oriented Architecture
	Cloud Native Design
	Management Considerations

	Cloud Native Design with Kubernetes
	Summary

	Chapter 3. DevOps and DevSecOps
	DevOps
	Cultural Change
	Critical Roles
	Cattle and Pets

	DevSecOps and Shifting Left
	DevSecOps with Kubernetes
	Summary

	Chapter 4. Security and Requirements
	Risk and Threat and Vulnerability
	Threat Modeling
	STRIDE
	DREAD
	PASTA

	Summary

	Chapter 5. Managing Threats
	Open Source Threat Intelligence
	Attack Phases
	MITRE ATT&CK Framework
	Attack Life Cycle

	Using an Attack Matrix
	Summary

	Chapter 6. Wrapping Up
	About the Authors



