An IDC Lab Validation Report, Sponsored by Red Hat | May 2020

ANALYZE
THE
FUTURE

IDC

Red Hat Quarkus
Lab Validation

RESEARCH BY:

1illlli

Arnal Dayaratna
Research Director, Software Development, IDC

b

Red Hat Quarkus Lab Validation Report

Table of Contents

Click on any section titles or page numbers to navigate to each.

Executive SUMMArY 3
Key FINdiNgs. 4
Methodology. ... 6
INtrodUuction 8
Java Remains the World’s Most Popular Programming Language. 8

Quarkus Optimizes Java for Containers Using a Closed-World

Assumption Approach for Immutable Containers. 10
SCENARIO 11— Quarkus Start-UpMemoryc....... 1"
SCENARIO 1.2A - Memory Utilizationfor10Pods... 12
SCENARIO 1.2B — Deployment Density........................ i 13
SCENARIO 1.3 — Quarkus Memory Usage UnderLoad.................................... 15
SCENARIO 21 —Scale an EXisting App ... 19

SCENARIO 3 - Time to First Response On-Premises or in a
Serverless ENVIFONMENt.o 20

SCENARIO 3.1 — Measure Time to First Response on a Docker Container

onBare Metal........ 20
SCENARIO 3.2 — Measure Time to First Response on a Serverless Environment 21
SCENARIO 444 —Live Coding 23
SCENARIO 4.1.2 - Live Coding a Kafka Stream ... 25
SCENARIO 4.1.3 — Reactive and Imperative Programming Modules.................... 27
CONCIUSION 29
APPENAIX ... 31
= DCh s ©® =

Red Hat Quarkus Lab Validation Report

Executive Summary

This report focuses on comparing Quarkus with another widely used
Java framework for cloud native development referred to, in this
document, as Framework A. The comparison between Quarkus

and Framework A is based on a number of criteria that are important
for container, Kubernetes, and cloud deployments and developer
efficiency. This report validates that Quarkus can save

as much as 64% of cloud resources as compared
to Framework A when running in native mode
and 37% when running on a Java Virtual Machine
(JVM). Furthermore, the report validates that Quarkus improves
developer productivity as compared to Framework A. Improvements
in developer productivity lead to faster time to market and innovation
that empower organizations to remain competitive by providing
enhanced user experiences and new innovative solutions to their
customers.

i

IDC

ANALYZE IDC Lab Validation Report, Sponsored by Red Hat
ANA Table of Conten
FUTURE Doc. #US46203820 able of Contents 3

Red Hat Quarkus Lab Validation Report

Key Findings

@ Cost Savings

« The use of Quarkus JVM and Quarkus Native lead to cost-savings-driven higher
deployment density of Kubernetes pods and reduced memory utilization.

« Expenditure of $100K USD annually in memory consumption for Framework A on AWS
translates to $63K with Quarkus JVM and $36K with Quarkus Native.

Deployment Densit
& © ploy y

« The number of pods that could be started using Quarkus exceeded the number
of pods that could be started using Framework A by:

+ ~8x for Quarkus Native
+ ~1.5x for Quarkus JVM

« Because customers can deploy more applications given the same amount of memory,
Quarkus users can do more with the same amount of resources.

5 Start-Up Memory Usage
On-premises

« Quarkus Memory Native reduced memory usage by ~90% in comparison to
Framework A.

« Quarkus Memory JVM reduced memory usage by ~20% in comparison to Framework A.

Cloud (OpenShift on AWS)

« For 10 Kubernetes pods on OpenShift 4.2 on AWS, the memory utilization of
Quarkus was:

- ~1/8 that of Framework A for Quarkus Native
- ~2/3 that of Framework A for Quarkus JVM

= Throughput Given Increasing Load
Quarkus JVM vs. Framework A

« For 32 concurrent connections, the ratio of Quarkus JVM throughput to Framework A
throughput was ~1.5.

« Between 40 and 56 concurrent connections, the ratio of Quarkus JVM throughput
to Framework A throughput ranged from 1.7 to 1.8.

« Quarkus JVM-based applications perform better than their Framework A counterparts
as load increases.

= 1IDC

ANALYZE IDC Lab Validation Report, Sponsored by Red Hat
THE Table of Contents
FUTURE Doc. #US46203820 @ @ 4

Bo

I

IDC

Red Hat Quarkus Lab Validation Report

« Under peak load, Quarkus JVM used 81% of the memory used by Framework A
(214 MB compared to 264 MB).

« Quarkus JVM optimizes memory consumption in comparison to Framework A as an
application scales.
Quarkus Native vs. Framework A

« Under peak load, Quarkus Native used ~1/3 of the memory used by Framework A
(80 MB compared to 264 MB).

« Quarkus Native optimizes memory consumption in comparison to Framework A
as an application scales.

Start-Up Time

On-premises

« Start-up time for Quarkus Native was roughly 12x faster than Framework A.
« Start-up time for Quarkus JVM was roughly 2x faster than Framework A.
Serverless

« The median Quarkus Native start-up time was ~4.5x faster than Framework A.
« The median Quarkus JVM start-up time was ~2x faster than Framework A.

Developer Productivity

« Quarkus improves developer efficiency by reducing the number of operational steps
required to update applications.

- By unifying imperative and reactive programming, Quarkus gives developers the
freedom to seamlessly choose between the two different styles of programming.

» Quarkus reduces maintenance time due to a smaller number of projects and source
files to manage on the part of developers.

THE

ANALYZE IDC Lab Validation Report, Sponsored by Red Hat
Table of Contents
FUTURE Doc. #US46203820 @ @ 5

Red Hat Quarkus Lab Validation Report

Methodology

These labs evaluate the benefits of using Quarkus in comparison to a non-Quarkus Java
application, with a specific focus on cloud-native applications that leverage the conjunction
of microservices, containers, container orchestration frameworks, and DevOps development
practices.

In this document, labs are described as “Scenarios” that enumerate the findings derived from
a specific deployment environment and methodology. All scenarios were executed by Red Hat
in environments that Red Hat created and managed. The findings were observed by IDC via
webcam contemporaneously with the execution of the labs.

Key components of our methodology were as follows:

=> The comparison of Quarkus to a non-Quarkus Java application featured three application
types, namely, Quarkus JVM, Quarkus Native, and Framework A.

=> No optimizations to Java were made for the purposes of this lab. All heap memory settings
are equivalent for Quarkus JVM, Quarkus Native, and Framework A.

-» Framework A uses Tomcat by default in all of the scenarios discussed in this document. In the
case of the developer productivity measurements in Scenario 4.1.1, 4.1.2 and 4.1.3, we used
the Framework A Tools Suite.

= The environments that we examined were non-cloud-based and cloud-based and are
detailed in each individual lab.

-» These comparisons of a Quarkus to a non-Quarkus Java application focus on application-
related costs. In quantifying costs, the labs assumed that the cost of RAM for an on-premises
deployment was commensurate to that of a cloud-based deployment once maintenance
costs are included. Another working assumption was that applications are not monolithic
but instead feature a conjunction of discrete services that experience varying gradations of
load and performance requirements.

-» Our methodology measured cost savings by quantifying the number of nodes dedicated to
workloads for Quarkus and non-Quarkus-based Java applications. In quantifying the number
of nodes, infrastructures nodes (otherwise known as master nodes) were not considered.
Because reductions in the number of application nodes that run containerized applications
lead to reductions in the number of master nodes required, any cost savings attributable to
decreases in applications nodes will be greater than what we have assumed here.

- Given that most production environments have associated environments for development,
integration, and testing/QA, the number of instances of a service within an organization
needs to be multiplied by the number of associated environments. IDC estimates that one
service may have a minimum of seven to 10 instances at any one time within an organization.

IDC

ANALYZE IDC Lab Validation Report, Sponsored by Red Hat
THE Table of nten
e Doc. #US46203820 able of Contents 6

i

I

Red Hat Quarkus Lab Validation Report

METHODOLOGY CONTINUED

This means that the cost savings and developer productivity delivered by Quarkus for

aproduction-grade application need to be multiplied by a factor that corresponds to the
number of related environments.!

In calculating cost savings, IDC did not account for the way in which one production-grade

service has a multitude of associated services that are likely to increase the cost by a multiple
of seven to 10.

= These labs examine the impact of Quarkus on developer productivity by examining how

the number of operational steps required of developers to update applications changes for
Quarkus versus non-Quarkus-based Java applications.

1. Typical instances of an application service in an enterprise use one instance for development, one instance for test, one for integration testing, one for pre-production,
two or more for production (HA and load balancing) and two or more for disaster recovery. This amounts to a total of 8 instances.

ANALYZE

ANA IDC Lab Validation Report, Sponsored by Red Hat

ID(: TR Doc, #US46203820 Table of Contents @ @ 7

Red Hat Quarkus Lab Validation Report

INntroduction

Java Remains the World’s Most Popular
Programming Language

As noted by IDC research, Java remains the most popular language used by developers
worldwide: 9.3 million of the 13.5 million professional developers worldwide are “heavy

to moderate” users of Java in comparison to 8.1 million for C/C++ and 7.9 million for JavaScript
in 2020. The popularity of Java partly involves the ability to “write once, run anywhere”
(WORA) as a result of the JVM infrastructure that renders Java applications portable across
different operating systems, platforms, and devices.

Figure 1 below illustrates how more than two thirds of the world’s developers are “heavy to
moderate” users of Java.

Even the most sophisticated enterprises are experiencing significant challenges in managing
facilities and operations, resulting in serious impact on their organizations.

FIGURE 1

Number of full-time developers worldwide by language in 2020 (in millions)

B1. Please indicate how much you (or the team you are responsible for) used
the following languages as a software developer in the last 12 months.

Total Java C/C++ Java SQL C# Python PHP Assembly VB/ COBOL
Script VB.NET

n=2,500 | Source: PaaSView and the Developer 2019

IDC

i

ANALYZE IDC Lab Validation Report, Sponsored by Red Hat
THE Tabl f nten
e Doc. #US46203820 able of Contents 8

Red Hat Quarkus Lab Validation Report

INTRODUCTION CONTINUED

Increased adoption of containers has posed a challenge for Java, because containers deliver
the portability that was previously provided by the JVM. JVMs running inside containers
represent an extraneous infrastructure that brings operational inefficiencies to the performance
of container-based Java applications. Java applications deployed on containers are notorious
for large memory requirements and lengthy start-up times.

In recent years, container adoption has grown as shown in figure 2 below, which enumerates
how close to 80% of developers use containers for at least 10% of their applications.

FIGURE 2

Percent of developers who use containers for net new apps

I5a. What percentage of net new applications that you developed within the
last 12 months leverage the following?

0%*-5% 5%-10* More than 10%*

% of net new applications developed in the last 12 months

n=2,500 | Source: PaaSView and the Developer 2019

The popularity of Java and the emerging use of containers suggest the need to optimize the
deployment of Java in container-native and Kubernetes-native environments. Quarkus optimizes
Java for containers by increasing the deployment density of containers due to reduced memory
utilization. Additionally, Quarkus decreases the start-up time for container-based applications,
improves application throughput, and enhances developer productivity by means of its unification
of imperative and reactive programming.

IDC

i

ANALYZE IDC Lab Validation Report, Sponsored by Red Hat
THE Tabl f nten
e Doc. #US46203820 able of Contents 9

I

Red Hat Quarkus Lab Validation Report

Quarkus Optimizes Java for Containers
Using a Closed-World Assumption Approach
for Immutable Containers

Quarkus is a Kubernetes-native Java framework that leverages GraalVM Native Image to
compile Java applications into a native executable. This means Quarkus combines the resource
efficiencies associated with compiling an application into a native executable with the ability to
create native binaries at build time. As such, Quarkus brings the benefits of native executables
to Java applications in conjunction with support for deployment to containers, which facilitates
application portability. Quarkus supports the immutable quality of containers and subsequently
enables the WORA attribute of the JVM that was responsible for its popularity.

When containers started to become popular, the Java community solved some of the most
common issues associated with running Java in containers, but the frameworks used to develop
container-based applications remained largely unchanged. Many frameworks were designed

for multi-application deployment environments like application servers, where applications
needed dynamic class loading to address their differing needs on a shared JVM infrastructure.
Many runtimes, like Framework A and Thorntail, continue to optimize for and use frameworks
that perpetuate those earlier design decisions. However, when deploying an application to a
Kubernetes-based environment in which containers are immutable, much of this runtime dynamic
behavior has been resolved at build time instead.

One significant difference between Quarkus and Framework A is that Quarkus takes a closed-
world assumption approach to Java in that it resolves as much as possible of the runtime
dynamic features at build time and, in doing so, saves memory and start-up time. Not only do
these benefits apply to the JVM, but they also make it easier to move workloads to a statically
linked runtime by leveraging GraalVM Native Image.

IDC

ANALYZE IDC Lab Validation Report, Sponsored by Red Hat
THE Table of Contents
FUTURE Doc. #US46203820 @ @ 10

Red Hat Quarkus Lab Validation Report

SCENARIO 11

Quarkus Start-Up Memory

Background

This lab quantified the start-up memory of a Quarkus application in comparison to a Framework
A application. The methodology used to measure start-up memory was to measure resident

set size (RSS) in comparison to heap size. Resident set size refers to the amount of memory used
by a process as opposed to the amount of memory that has been swapped out. To determine
start-up memory, the resident set size was measured after the first request to the application.

Deployment Environment and Relevant Code

The deployment environment was on-premises and featured containers on bare metal.
For more details regarding the deployment environment, see “Bare-Metal Environment A” in
the appendix.

Code and configuration details: Appendix: Code and configuration for Lab 1.1

Key Findings

On-premises start-up memory usage of Quarkus on a JVM and natively was lower than
Framework A as shown below:

Memory usage after the first request

Application stack Memory utilization
Framework A 187 MB
Quarkus on JVM 151 MB
Quarkus on Native 21MB

Memory (RSS) usage after the first request

« Quarkus Memory Native
reduced memory usage
by ~89% in comparison to
Framework A.

« Quarkus Memory JVM
reduced memory usage
by ~20% in comparison to
Framework A.

Framework A Quarkus Memory Quarkus Memory
JVM Native

IDC

i

ANALYZE IDC Lab Validation Report, Sponsored by Red Hat
THE Table of Contents
FUTURE Doc. #US46203820 "

Red Hat Quarkus Lab Validation Report

SCENARIO 1.2A

Memory Utilization for 10 Pods

Background

This lab quantified the ability of the Quarkus development framework to optimize memory
utilization by measuring the following:

« Memory utilization after starting 10 pods

Deployment Environment and Relevant Code

OpenShift 4.2 hosted by AWS. For more detail about the environment, see “Container
Orchestration Cluster” in the appendix.

Code and configuration details: Appendix: Code and configuration for Lab 1.2

Key Findings
For 10 Kubernetes pods on OpenShift 4.2 on AWS, the memory utilization of Quarkus was:

« ~1/8 that of Framework A for Quarkus Native
« ~2/3 that of Framework A for Quarkus on JVM

Public-cloud-based memory usage of Quarkus was lower than Framework A as shown below:

Memory utilization after starting 10 pods

Application stack Memory utilization
Framework A 1594 MB
Quarkus on JVM 1098 MB
Quarkus on Native 194 MB

Memory usage for 10 instances

1594 MB

1098 MB

Framework A Quarkus Memory Quarkus Memory
JVM Native

IDC

i

ANALYZE IDC Lab Validation Report, Sponsored by Red Hat
THE Table of Contents
FUTURE Doc. #US46203820 12

Red Hat Quarkus Lab Validation Report

SCENARIO 1.2B

Deployment Density

Background
This lab quantified the following:
« The number of pods that can be started with 2 GB

Deployment Environment and Relevant Code

OpenShift 4.2 hosted by AWS. For more detail about the environment, see “Container
Orchestration Cluster” in the appendix.

Code and configuration details: Appendix: Code and configuration for Lab 1.2

Key Findings

The number of pods that can be started with Kubernetes is greater in the case of Quarkus in
comparison to Framework A, as follows:

+ ~8x more pods in the case of Quarkus Native
+ ~1.5x more pods in the case of Quarkus JVM

Number of pods that can be started with 2 GB

Application stack Number of pods Memory utilization
Framework A 12 1911 MB
Quarkus on JVM 18 1996 MB
Quarkus on Native 98 1967 MB

Memory usage for 10 instances

Framework A Quarkus Memory Quarkus Memory
JVM Native

IDC

i

ANALYZE IDC Lab Validation Report, Sponsored by Red Hat
ANA Table of Conten
FUTURE Doc. #US46203820 able of Contents 13

Red Hat Quarkus Lab Validation Report

Why It Matters

Context

Kubernetes becomes more cost-effective as the number of applications that can be hosted on
a cluster increases.

Traditional cloud-native development stacks, based on the JVM, have large memory footprints
and slow start-up times.

Kubernetes needs direction on the amount of memory required for each pod that is scheduled
to run on a node. If the node doesn’t have the minimum memory needed for the application,
it will die immediately.

Reduced memory consumption of a Kubernetes application, as enabled by Quarkus, means an
increased likelihood that the application will successfully run using Kubernetes.

Quarkus increases the deployment density of container-based applications, given a specific
memory allocation.

Significance

I

Lower start-up memory is important because it indicates the amount of memory that an
application that is not under heavy load will use in a production environment. In cases where
the consumption of memory is used to calculate the cost, customers will pay less in cloud
resource consumption for the same amount of memory using Quarkus than they would for
Framework A.

Quarkus Native allows customers to host roughly 8 times as many applications as Framework
A, given the same amount of memory.

Meanwhile, Quarkus JVM allows customers to host roughly 1.25 times as many applications
as Framework A, given the same amount of memory.

Quarkus optimizes resource consumption with respect to memory and subsequently enables
cost savings related to memory consumption.

Quarkus simplifies the operator experience by making it easier for customers to manage
memory adequacy for container-native deployments.

Quarkus users can do more with the same amount of resources. This means applications using
Quarkus can be deployed on fewer nodes than applications that don’t use Quarkus, and the
reduction in the number of nodes means that organizations can leverage fewer infrastructure
resources to accomplish the same goals, thereby saving money and rendering it easier to
manage the resources in question.

Because Quarkus JVM and Quarkus Native enable cost savings due to increased deployment
density and optimized memory utilization, cloud-hosting costs can be reduced as a result
as well.

IDC

ANALYZE IDC Lab Validation Report, Sponsored by Red Hat
THE ’ Table of Contents
FUTURE Doc. #US46203820 @ @ 14

Red Hat Quarkus Lab Validation Report

SCENARIO 1.3

Quarkus Memory Usage Under Load

Background

This lab examined how a Quarkus application scales in relation to increasing demands from end
users. The lab quantified the following:

« How application throughput varies in relation to the number of concurrent end users

« How memory consumption of a Quarkus application scales in relation to peak load, defined
as the maximum number of requests per second

« Throughput per MB of memory

Deployment Environment and Relevant Code

The deployment environment was on-premises and featured containers on bare metal. See
“Bare-Metal Environment B” in the appendix.

Code and configuration details: Appendix: Code and configuration for Lab 1.3

The lab measured memory usage of a Quarkus and a Framework A application as the load was
steadily increased.

Key Findings
Throughput versus number of concurrent users (Peak value marked with bold)

Concurrent

. Quarkus JVM
connections

Quarkus Native

Framework A

i

8 1375 req/sec 1635 reqg/sec 1068 req/sec
16 2597 reqg/sec 3033 reqg/sec 1932 req/sec
24 3568 req/sec 4368 reqg/sec 2693 reg/sec
32 3557 reqg/sec 5380 reqg/sec 3139 req/sec
40 3697 reqg/sec 6396 reqg/sec 3266 req/sec
48 3555 reg/sec 6389 reqg/sec 3212 req/sec
56 3578 reqg/sec 5986 req/sec 3106 reqg/sec

THE
FUTURE

IDC

ANALYZE

IDC Lab Validation Report, Sponsored by Red Hat
Doc. #US46203820

Table of Contents @ @ 15

Red Hat Quarkus Lab Validation Report

SCENARIO 1.3 - QUARKUS MEMORY USAGE UNDER LOAD CONTINUED

o—o0 Framework A e&—e Quarkus JVM Quarkus Native

7000 req/sec

6000 req/sec

5000 reqg/sec

4000 req/sec

3000 reqg/sec

2000 req/sec

1000 req/sec
8 16 24 32 40 48 56

Concurrent connections

Quarkus JVM vs. Framework A
« For 32 concurrent connections, the ratio of Quarkus JVM throughput to Framework A
throughput was 1.5.

« Between 40 and 56 concurrent connections, the ratio of Quarkus JVM throughput
to Framework A throughput ranged between 1.7 and 1.8.

« Quarkus JVM-based applications perform better than their Framework A counterparts
as load increases.

Quarkus Native vs. Framework A
« For 32 concurrent connections, the ratio of Quarkus Native throughput to Framework A
throughput was 0.9.

- Between 40 and 56 concurrent connections, the ratio of Quarkus Native throughput to
Framework A throughput ranged between 0.85 and 0.9.

- Framework A is superior to Quarkus Native with respect to the ability to scale an application
that is experiencing increased load.

Why It Matters

Context

« Throughput is a measure of the workload experienced by an application. Typically measured
in requests/responses within a designated time frame, throughput is also often defined
as the number of transactions per second. By measuring throughput in relation to the number

B lidation rt, S red E
ANALYZE IDC Lab Validation Report, Sponsored by Red Hat Table of Contents @ @ 16

FUTURE Doc. #US46203820

=|DC

Red Hat Quarkus Lab Validation Report

SCENARIO 1.3 — QUARKUS MEMORY USAGE UNDER LOAD CONTINUED

of concurrent connections, this lab examines how throughput scales in conjunction with
demands imposed on the application by more concurrent users.

Significance

- For all three of the applications tested, throughput increased as the number of concurrent
connections increased from 10 to 40.

« Quarkus JVM’s ability to increase throughput in excess of that demonstrated by both Quarkus
Native and Framework A illustrates its exceptional ability to continue to perform while
experiencing intensified application demands.

Key Findings
Memory usage for peak load (MEM_PEAK)

Application stack Memory utilization Peak throughput
Framework A 264 MB 3697 reqg/sec
Quarkus JVM 214 MB 6396 req/sec

Quarkus Native 80 MB 3266 reqg/sec

Quarkus JVM vs. Framework A
« Under peak load, Quarkus JVM used 214 MB of memory in comparison to Framework A’s use
of 264 MB.

« Quarkus JVM optimizes memory consumption in comparison to Framework A as an application
scales.

Quarkus Native vs. Framework A
« Under peak load, Quarkus Native used 80 MB of memory in comparison to Framework A’s
use of 264 MB.

« Quarkus Native optimizes memory consumption in comparison to Framework A as an
application scales.

Why It Matters

Context

« Memory usage under peak load is a measure of the ability of an application to optimize
memory consumption as the demands placed on it intensify. The smaller the memory usage
under peak load, the more effectively an application can consume memory.

IDC

i

ANALYZE IDC Lab Validation Report, Sponsored by Red Hat
THE Table of Contents
FUTURE Doc. #US46203820 17

I

Red Hat Quarkus Lab Validation Report

SCENARIO 1.3 - QUARKUS MEMORY USAGE UNDER LOAD CONTINUED

Significance

« Lower memory usage for Quarkus JVM and Quarkus Native indicate that they are more
resource-efficient than Framework A.

« Moreover, lower memory consumption under peak usage means that Quarkus customers can
increase the density of their applications and correspondingly maximize infrastructure-related
resource consumption more generally.

« Customers using Quarkus JVM and Quarkus Native can expect to pay less for compute
resources than their Framework A counterparts.

Key Findings
Result as req/sec/MB

Application stack Req/Sec/MB Comparison
Framework A 14 req/sec/MB 0%
Quarkus on JVM 30 reqg/sec/MB 113%
Quarkus on Native 41 reqg/sec/MB 193%

Result as req/sec/MB

« Throughput in req/sec/MB for Framework A, Quarkus JVM, and Quarkus Native was 14 req/
sec/MB, 30 reqg/sec/MB, and 41 reqg/sec/MB, respectively.

- Throughput was fastest per MB for Quarkus Native.

« Both Quarkus JVM and Quarkus Native use memory more efficiently and deliver faster
throughput for applications that are experiencing increased load than Framework A.

Why It Matters

Context

- Throughput per MB refers to the ability of an application to handle requests/second for each
designated MB of memory. Greater throughput per MB is illustrative of enhanced capabilities to
scale an application as load increases given memory constraints.

Significance
« Higher throughput for Quarkus JVM and Quarkus Native illustrates how Quarkus facilitates
increased throughput while keeping memory utilization constant.

- Quarkus JVM and Quarkus Native enable applications to increase load without requiring a
corresponding increase in memory to support the intensification of the load placed on an
application.

IDC

ANALYZE IDC Lab Validation Report, Sponsored by Red Hat
THE Table of Contents
FUTURE Doc. #US46203820 18

Red Hat Quarkus Lab Validation Report

I

SCENARIO 21

Scale an Existing App

Background

The objective of this lab was to understand the ease with which Quarkus-based applications can
be scaled up. This lab focused on the ability of an application to scale up by quantifying the time
it took for a pod to register itself as ready after initialization.

Deployment Environment and Relevant Code

The deployment environment was on-premises and featured containers on bare metal. For more
detail about the environment, see “Bare-Metal Environment A” in the appendix.

Code and configuration details: Appendix: Code and configuration for Lab 2.1

Key Findings

Result: Time to scale (seconds)

Framework First Run Second Run m

Framework A 49.960 49.806 50.329 49.960
Quarkus JVM 30.359 29.829 30.451 30.359
Quarkus Native 10.293 9.446 9.935 9.935

« The median Quarkus JVM time to scale up was roughly 60% of the time required for
Framework A.

+ Meanwhile, Quarkus Native time to scale up was roughly 20% of the time required for
Framework A. In other words, Quarkus Native scaled up roughly five times faster than
Framework A.

Why It Matters

Context

« An application’s ability to scale up is important because a single cluster can often be used for
many applications. Given that many of an application’s services can be variously scaled up
or down, the ability of an application to scale up is illustrative of the ease with which a cluster
can be used for many applications in parallel.

Significance

« Quarkus JVM and Quarkus Native demonstrated the ability to scale up faster than Framework
A. The speed with which Quarkus enables containers to scale up means that services can be

IDC

ANALYZE IDC Lab Validation Report, Sponsored by Red Hat
THE Table of Contents
FUTURE Doc. #US46203820 19

Red Hat Quarkus Lab Validation Report

scaled down when not utilized to optimize resource consumption. Developers can rely

on Quarkus’s ability to rapidly scale up when designing applications characterized by a subset
of their services that are scaled down. The ability of Quarkus to rapidly scale up individual
services enhances the latitude developers have to develop applications with microservice
architectures that distribute services amongst a multitude of individual containers that
differentially scale up and down.

« Quarkus’s fast scale-up contributes to seamless failovers resulting in better end-user
experience and higher customer satisfaction.

« Quarkus has the ability to complete a rolling upgrade in less time, getting new application
versions up and running more quickly.

SCENARIO 3
Time to First Response On-Premises or in a
Serverless Environment

Details of the deployment environment and key findings for both Lab 3.1 and 3.2 are given below.

SCENARIO 3.1
Measure Time to First Response on a Docker
Container on Bare Metal

Background

This lab measured the start-up time of a Quarkus application in comparison to a Framework A
application. The “time to first response” methodology was used.

I

IDC

fﬁ?ﬁf IDC Lab Validation Report, Sponsored by Red Hat Table of Contents @ @ 20

Doc. #US46203820

Red Hat Quarkus Lab Validation Report

SCENARIO 3.1 = MEASURE TIME TO FIRST RESPONSE ON A DOCKER CONTAINER
ON BARE METAL CONTINUED

Deployment Environment and Relevant Code

The deployment environment was on-premises and featured containers on bare metal. For more
detail about the environment, see “Bare-Metal Environment A” in the appendix.

Code and configuration details: Appendix: Code and configuration for Lab 3.1

Key Findings

Result: Time to First Response (seconds)

Framework First Run Second Run Third Run Median
Framework A 9.675 9.649 9.598 9.649
Quarkus JVM 4.539 4.455 4.398 4.455

Quarkus Native 0.862 0.755 0.830 0.830

« Start-up time for Quarkus Native was 8.6% the start-up time of Framework A. In other words,
the time to first response for Quarkus Native was roughly 12 times faster than Framework A.

« Meanwhile, the start-up time for Quarkus JVM was 46.2% that of Framework A. In fact, for
Quarkus JVM, time to first response was two times faster than Framework A.

SCENARIO 3.2

Measure Time to First Response on a
Serverless Environment

Background

This lab measured the start-up time of a Quarkus application in comparison to a Framework A
application in a serverless environment. The methodology used for measuring start-up time was
to use the time to first request.

IDC

ANALYZE IDC Lab Validation Report, Sponsored by Red Hat
THE Table of Contents
FUTURE Doc. #US46203820 21

i

Red Hat Quarkus Lab Validation Report

SCENARIO 3.2 - MEASURE TIME TO FIRST RESPONSE ON A SERVERLESS
ENVIRONMENT CONTINUED

Deployment Environment and Relevant Code

The environment type was a serverless environment on OpenShift 4.2. For more detail about
the environment, see “Container Orchestration Cluster” in the appendix.

Code and configuration details: Appendix: Code and configuration for Lab 3.2

Key Findings

Result: Time to First Response (seconds)?

Runtime Actual result Compared with ref value
Go (for reference) “'432@%%:53%55;23'5075; 0.000s (REF VALUE)
Framework A 40557@&%1'1?23’011'9415; 32.236s
Quarkus JVM 15'320';’E2§'1298'1857’1159'871S; 10.337s
Quarkus Native 9'237|\S/I’E9Ij(:)s79.655‘é§'s585s; 0.051s

« The median Quarkus JVM time to scale up was roughly 47.6% of the time required for
Framework A. In other words, the median Quarkus JVM time to first response was about two
times faster than Framework A.

« Meanwhile, Quarkus Native time to scale up was roughly 22.9% of the time required for
Framework A. In fact, the median Quarkus Native time to first response was 4.4 times faster
than Framework A.

Why It Matters

Context

« One of the key benefits of containers as compared to virtual machines is their reduced
start-up time. In the case of Java applications, start-up time for container-based applications
tends to be longer than other applications because of the overhead introduced by JVMs
running on container infrastructure. Because container-based Java applications are notorious
for lengthy start-up times, improvements to these start-up times constitute a notable
performance-related benefit.

2. Framework A, Quarkus JVM and Quarkus Native experienced a start-up time-related delay of 9.0 to 9.5 seconds due to an attribute of the specific version of OpenShift
on which this lab was performed. Since the execution of this lab, this delay is no longer an attribute of the OpenShift platform. We used a "Go" application as a reference
value to compare the difference between frameworks we use.

IDC

ANALYZE IDC Lab Validation Report, Sponsored by Red Hat
THE Table of Contents
FUTURE Doc. #US46203820 22

i

Red Hat Quarkus Lab Validation Report

- For serverless infrastructure, reduced start-up time is important because containers are created
on demand and the time to first response can impact user experience. Reductions in start-up
time for container-native, serverless applications translate to lower application latency and
improved performance. In the case of Functions-as-a-Service-based applications, for example,
reduced start-up time means faster execution of an application subsequent to the realization
of a predefined event or trigger.

Significance

« Quarkus reduced the start-up times for on-premises, container-based applications by 53.8% in
the case of Quarkus JVM and 91.4% for Quarkus Native. These reductions indicate that Quarkus
was responsible for a significant reduction in start-up time given that the median start-up for the
application that was tested dropped from greater than 9.6 seconds in the case of Framework A
to less than 4.5 seconds for Quarkus JVM and less than a second for Quarkus Native.

« Reductions in start-up time are particularly important for microservices applications in which
all services are not running at the same time given that discrete services need to be initialized
on demand. Similarly, reductions in start-up time are especially important for serverless
applications that are triggered by predefined events.

- The ability of Quarkus to facilitate faster start-up times for serverless applications has profound
implications for the use of Java for serverless applications. Quarkus empowers developers
to develop serverless, Java-based applications that exhibit accelerated start-up times in
comparison to Framework A. Faster start-up times are especially significant for Java-based
serverless applications given Java’s history of being responsible for long start-up times for
container-native applications. By reducing the start-up time for container-based applications,
Quarkus promises to render Java better-suited for serverless application development.
Developers can now use Java in conjunction with Quarkus to reap the benefits of serverless
applications without concerning themselves about delayed start-up times for the container-
based applications that undergird serverless deployments.

SCENARIO 4141

Live Coding

Background

This lab examined developer productivity enabled by Quarkus in comparison to Framework A
by quantifying the number of operational steps required to update an application. Specifically,
the lab examined the number of operational steps associated with adding extensions to
Quarkus Maven projects.

=|DC

ANALYZE IDC Lab Validation Report, Sponsored by Red Hat
THE ’ Table of Contents
FUTURE Doc. #US46203820 @ @ 23

I

SCENARIO 4.11 - LIVE CODING CONTINUED

Deployment Environment

« Quarkus 1.2.1.Final
. Java SE 11
- Maven 3.6
- Extensions
« quarkus-resteasy
+ quarkus-resteasy-jsonb
« quarkus-hibernate-orm
« quarkus-hibernate-orm-panache
« quarkus-jdbc-h2
« Quarkus 1.2.1.Final

For more details about updating Quarkus applications, see:

https://quarkus.io/guides/getting-started

Key Findings
QU3
Developer round trip 2 steps:
(making and testing « Change code
a change in source code) . Save

-1 measure: # of steps

Red Hat Quarkus Lab Validation Report

> 2 steps:

- Make a project change

» Stop the service

« Start the service

Test the change

Run the Framework A app
« Test

- Quarkus requires two steps to update applications in the form of editing an application and
saving it. In contrast, frameworks such as Framework A require developers to make a change
to a project, stop and start relevant services, test the change, run the application, and then

test the application again.

- Quarkus radically reduces the number of operational steps required by developers to update

an application, thereby enhancing developer productivity.

Why It Matters

Context

Developers routinely make changes to code that they are developing. As developers make
changes to code, they need to test them to determine whether they have had the desired
effect. This often involves recompiling an application, deploying the application, reviewing the
updated application, and repeating the same development life cycle. In the case of most

Java applications, updates made by developers to applications are enabled by reloading or

rebuilding packages, or otherwise by hotswapping jar/ear files.

THE

FUTURE Doc. #US46203820

IDC

ANALYZE IDC Lab Validation Report, Sponsored by Red Hat

Table of Contents @ @ 24

https://quarkus.io/guides/getting-started

Red Hat Quarkus Lab Validation Report

SCENARIO 4.1.1 - LIVE CODING CONTINUED

Quarkus, on the other hand, uses live coding to perform updates to applications, which means
developers can immediately see the effect of updates to applications. Another benefit of
Quarkus for developers is the ability to use live coding on any IDE or across different build
tools and obtain consistent results.

Significance

The practice of live coding, on the part of Quarkus, is significant because it facilitates
improvements in developer productivity related to the operational efficiency of development-
related tasks. Developers have to perform fewer steps to test the efficacy of updates to an
application because they no longer need to reload packages or hotswap jar files.

In addition, Quarkus reverses stack traces to display the most meaningful error first to
developers while doing live coding. This leads to lower troubleshooting times and higher
productivity as well.

I

SCENARIO 4.1.2

Live Coding a Kafka Stream

Background

This lab examined developer productivity enabled by Quarkus for applications that use Kafka-
based streaming data.

Deployment Environment

« Quarkus 1.2.1.Final
. Java SEN
- Extensions
» quarkus-resteasy
» quarkus-resteasy-jsonb
« quarkus-kafka-streams
» quarkus-smallrye-reactive-messaging
« Quarkus Tools for Visual Studio Code

For more details about using Quarkus with Kafka extensions, see:

IDC

ANALYZE IDC Lab Validation Report, Sponsored by Red Hat
THE Table of Contents
FUTURE Doc. #US46203820 25

https://quarkus.io/guides/kafka-streams

I

Red Hat Quarkus Lab Validation Report

SCENARIO 4.1.2 - LIVE CODING A KAFKA STREAM CONTINUED

For more details about connecting Kafka with Quarkus, see:
https://quarkus.io/qguides/kafka

Key Findings

U3 ac ONa aVva 8 = o
Developer round trip 2 steps: > 2 steps:
(making and testing « Change code « Stop the Kafka server

a change in source code « Save
that uses Kafka Streams)
- 1 measure: # of steps

Build the application
Restart the application
Check if the changes are
working

- By using Quarkus, developers can reduce the number of operational steps required to update
a Kafka-based application.

« Whereas traditional Java frameworks such as Framework A require developers to stop and
restart a Kafka server to understand the efficacy of application-related updates, Quarkus users
can make application changes and save them without performing additional operational steps.

Why It Matters

Context

Developers routinely make changes to code that they are developing. As developers make
changes to code, they need to test them to determine whether they have had the desired

effect. This often involves recompiling an application, deploying the application, reviewing the
updated application, and repeating the same development life cycle. In the case of most Java
applications, updates made by developers to applications are enabled by reloading or rebuilding
packages, or otherwise by hotswapping jar/ear files.

Quarkus, on the other hand, uses live coding to perform updates to applications, which means
developers can immediately see the effect of updates to applications. Another benefit of
Quarkus for developers is the ability to use live coding on any IDE or across different build tools
and obtain consistent results.

Significance

The ability to make live changes to an application that leverages streaming data is significant
because these applications typically require developers to stop and start streaming data to
make updates to applications. By empowering developers to make live updates to streaming
applications, Quarkus improves developer productivity for any application that leverages
streaming data, whether an IoT or Al/ML application or a data analytics application that ingests
an incoming data feed.

IDC

ANALYZE IDC Lab Validation Report, Sponsored by Red Hat
THE Table of Contents
FUTURE Doc. #US46203820 26

https://quarkus.io/guides/kafka

Red Hat Quarkus Lab Validation Report

I

SCENARIO 4.1.3
Reactive and Imperative Programming

Modules

Background

This lab examined the ability to program using both imperative and reactive approaches within
the same source file in a project, and make live changes.

Deployment Environment

« Quarkus 1.2.1.Final
. Java SE 1
- Extensions
« quarkus-resteasy
+ quarkus-resteasy-jsonb
« Quarkus Tools for Visual Studio Code

For more details about reactive programming using Quarkus, see:
https://quarkus.io/guides/getting-started-reactive

Key Findings
U3 a0 Ooha ava A s °
Developer round trip 2 steps: > 2 steps:
(making and testing a « Change code « Create a new project
change in source code) « Save « Change code
- 2 measures: # of steps « Save

« mvn clean compile test
« Run the app
« Test

Maintain two different
projects for two different
styles of programming

Why It Matters

Context

Imperative programming describes code that elaborates the set of steps a program must take to
achieve a goal. Also known as procedural or algorithmic programming, imperative programming
requires the entire set of steps that constitute an application to be executed for the application
to perform.

IDC

ANALYZE IDC Lab Validation Report, Sponsored by Red Hat
THE Table of Contents
FUTURE Doc. #US46203820 27

https://quarkus.io/guides/getting-started-reactive

I

Red Hat Quarkus Lab Validation Report

Reactive programming, in contrast, is a programming model that deals with asynchronous data
streams and the propagation of change. A change to one variable in an application that is
related to another automatically updates the other variable. The reactive model of programming
means changes can be propagated asynchronously for different subsets of an application
without requiring the compilation of all of its constituent steps.

While the choice of imperative and reactive programming is fundamentally stylistic, reactive
programming is a good choice for applications that leverage a multitude of asynchronous data
streams that deliver rapid updates to applications.

Significance

Quarkus empowers developers to create applications that feature reactive and imperative
programming, thereby obviating the need to maintain discrete projects for the two different
styles of programming. This centralization of the capability to develop imperatively and reactively
renders it easier for developers to switch between the two programming modalities as needed
within the same source file without resorting to separate development frameworks or the
creation and maintenance of separate projects or sets of files.

In addition, different project teams can choose reactive or imperative styles of development
while standardizing on the same runtime. This makes it easier for developers to move between
projects. Teams can also leverage their investment in Java and not have to switch between
different runtimes/languages like Node.js.

By bringing together the imperative and reactive models of programming, Quarkus supports
non-blocking IO and avoids blocking the 10 thread. By using a reactive core, Quarkus uses non-
blocking code for application requests that pass through the event-loop thread. In addition, it
supports imperative programming for developing REST or client-side applications. All application
requests are managed by non-blocking IO threads that route the request to the code that is
responsible for the request. The code that handles the request does so imperatively or reactively
depending on the nature of the request. This ability to integrate imperative and reactive
programming into application development makes it easier for developers to write code that
executes asynchronously in conjunction with imperative code with which they are likely to

be familiar.

Quarkus’s enablement of imperative and reactive programming models improves developer
productivity by minimizing context switching for developers and reducing the operational
work required to program both reactively and imperatively. Given the relevance of reactive
programming to reactive systems, the ability to code both reactively and imperatively
contributes to a broader improvement of the developer experience.

IDC

ANALYZE IDC Lab Validation Report, Sponsored by Red Hat
THE ’ Table of Contents
FUTURE Doc. #US46203820 @ @ 28

Red Hat Quarkus Lab Validation Report

Conclusion

Summary of Benefits

» Key benefits of using Quarkus include increased container deployment density, enhanced
developer productivity, improved application throughput given increasing load, and decreased
container start-up time.

« Taking into consideration the need for multiple environments for use cases such as
development, testing, and high availability, the number of instances of services that an
organization needs to run can be seven to 10 times the number of unique services.

This means the total cost savings enabled by Quarkus is significantly higher than what we
have represented here given that our analysis does not take into account the multitude
of analogous environments that organizations need to run.

« Quarkus expands the range of use cases to which Java can be meaningfully applied, to
serverless and Kubernetes-native development.

« Quarkus optimizes Java for serverless use cases because of rapid start-up times and its
minimization of cold starts. Ennovative Solutions, for example, noted decreases in serverless
start-up time from between six and seven seconds to less than 200 milliseconds as told to
Red Hat by Ennovative Solutions in a blog post.

« Similarly, Quarkus optimizes Java for use with containers because of its increase of
deployment density. Lufthansa Technik noted the ability to run deployments that were three
times denser as measured by the number of microservices, leading to a threefold decrease
in cloud resource costs, as told to Red Hat by Lufthansa Technik in a blog post.

« By unifying reactive and imperative programming, Quarkus gives individual developers as
well as developer teams the freedom to choose imperative and reactive programming
styles without switching between different runtimes, projects, and source files. This can
result in the maintenance of a smaller number of projects and source files, leading to easier
supportability of project assets and release processes.

Cost Savings

Cost Savings Resulting from Container Utilization

Consider an example in which a customer is using 300 discrete services in an application that
correspond to 300 Kubernetes-based pods. Assume 120 pods require high memory utilization,
another 120 pods require medium memory utilization, and 60 pods require low memory
utilization. Based on this allocation of pods, we can compute how many nodes with AWS 16 GB
of memory are needed for this application.

IDC

ANALYZE IDC Lab Validation Report, Sponsored by Red Hat
ANA Table of Conten
FUTURE Doc. #US46203820 able of Contents 29

i

https://quarkus.io/blog/ennovativesolutions-uses-quarkus-with-aws-lambda/
https://quarkus.io/blog/aviatar-experiences-significant-savings/
https://quarkus.io/blog/aviatar-experiences-significant-savings/
https://quarkus.io/blog/aviatar-experiences-significant-savings/

i

Red Hat Quarkus Lab Validation Report

CONCLUSION CONTINUED

Based on the reduced memory utilization demonstrated by this lab, Quarkus JVM and Quarkus
Native deliver cost savings as follows:

Application stack Estimated Saving

Framework A 0%
Quarkus on JVM 37%
Quarkus on Native 64%

These savings in reduced cloud memory utilization are commensurate to the savings in real
dollars that an organization would save by using Quarkus over Framework A. For illustration
purposes, if you spend $100K USD annually in memory consumption on AWS using Framework
A, you would spend $63K with Quarkus JVM and $36K with Quarkus Native.

ANALYZE IDC Lab Validation Report, Sponsored by Red Hat

ID(: e Doc. #US46203820 Table of Contents @ @ 30

Red Hat Quarkus Lab Validation Report

Appendix

Bare-Metal Environment A

Operating System Red Hat Enterprise Linux Server release 7.7 (Maipo)
CPU/Cores 2x CPU Intel(R) Xeon(R) CPU E5620 @2.40GHz, 8 cores (HT)
Total memory 157 GB

Container system Podman

CGroups limit used 4 cores, 256 MB

Bare-Metal Environment B (Performance test)

Operating System Red Hat Enterprise Linux release 8.0 (Ootpa)

CPU/Cores 2x Intel(R) Xeon(R) CPU E5-2690 0 @ 2.90GHz, 32 cores (HT)
Total memory 264 GB

Container system Podman

CGroups limit used 4 cores, 256 MB

Container Orchestration Cluster

Kubernetes version OpenShift 4.2

Number of
worker nodes

m4.4xlarge

+ 2.3 GHz Intel Xeon® E5-2686 v4 (Broadwell) processors or 2.4 GHz Intel

Node AWS spec Xeon® E5-2676 v3 (Haswell) processors

« 16 vCPU (8 cores HT)

« 64 GB Memory

ANALYZE IDC Lab Validation Report, Sponsored by Red Hat
ANA Table of Conten
FUTURE Doc. #US46203820 able of Contents 31

IDC

i

https://aws.amazon.com/ec2/instance-types/

Red Hat Quarkus Lab Validation Report

Code and configuration for Lab 1.1

The containers are started using the following command:

${container runtime} run --ulimit memlock=-1:-1 -d --rm=true -p 5432:5432 \

--network=${container network name} \

--memory-swappiness=0 \

--name ${container db name} \

-e POSTGRES_USER=${psql_db _user} \

-e POSTGRES_PASSWORD=${psql_db_password} \

-e POSTGRES DB=${psql_db name} postgres:10.5 > /dev/null

See the code in GitHub

The container _ cpu _ limit will be setto 1core and the container _ memory _ limit will be set
to 500 MB.

The endpoint that we will hit in Quarkus code is the following:

@Path("/")
public class ExampleResource {

@Inject
@ConfigProperty (name = "app.runtime")
String runtime;

@GET
@Produces (MediaType.TEXT PLAIN)
public String hello() {
return String.format("Hello, World from Quarkus running in %s !!!" runtime);

See the code in GitHub

And for Framework A it’s the following:

@RestController

@RequestMapping ("/")

public class ExampleController {
public final String runtime;

public ExampleController (@Value ("${app.runtime}") String runtime) ({
this.runtime = runtime;

@GetMapping
public String sayHello() {
return String.format("Hello, World from Spring on %s!!!", runtime) ;

See the code in GitHub

ANALYZE
THE
FUTURE

=|DC

oy Red Hat Table of Contents @ @ 32

https://github.com/tqvarnst/idc-quarkus-labs/blob/master/src/main/scripts/run.sh#L97-L104
https://github.com/tqvarnst/idc-quarkus-labs/blob/master/quarkus-todo/src/main/java/com/example/ExampleResource.java#L11-L23
https://github.com/tqvarnst/idc-quarkus-labs/blob/master/spring-todo/src/main/java/com/example/Application.java#L17-L32

I

Red Hat Quarkus Lab Validation Report

APPENDIX CONTINUED

More importantly for the memory is actually what dependencies are used. The dependency will add a lot
of classes to the meta space in a JVM, and depending on how good a framework is at minimizing or
eliminating what is actually being, the lower the memory usage is going to be.

The following table details which dependencies are providing what functionality:

Functionality Quarkus

REST and WEB starter-web quarkus-resteasy-jackson
Java Persistence API starter-data-jpa, lombok quarkus-hibernate-orm-
& Simplified access panache

Database Drivers (PROD) postgresql quarkus-jdbc-postgresql
Database Driver (DEV) h2 quarkus-jdbc-h2

Health Checks starter-actuator quarkus-smallrye-health

Code and configuration for Lab 1.1

Lab 1.2 uses the same code as Lab 1.1, but the setup is done in OpenShift
and using Grafana to plot the memory usage and number of containers.
Applications are separated with namespaces (called “project” in OpenShift),

and the gauge for collecting Framework A memory looks like this: 1.913GB

The query to collect the data looks like this:

sum by (namespace) (container memory rss{namespace=~"spring", container="",K pod=~"todo-.*"})

” «

Where the namespace are either “spring,” “quarkus-jvm,” or “quarkus”

To illustrate the number of containers, T
we use a “bar gauge,” which looks like this: 12

The bar gauge is configured with a max and threshold value of 100 instances, and the query to collect
the data looks like this:

sum by (namespace) (kube pod container_ status_running{namespace=~"spring" , pod=~"todo-.*"})

” «

Where the namespace are either “spring,” “quarkus-jvm,” or “quarkus”

The containers are packaged together using Dockerfiles.

Doc. #US46203820

IDC

~ La ation ort, S red a
fﬁ?ﬁf IDC Lab Validation Report, Sponsored by Red Hat Table of Contents @ @ 33

Red Hat Quarkus Lab Validation Report

Spring

FROM fabric8/java-alpine-openjdk8-jre

ENV JAVA OPTIONS="-Xmx64m -Djava.security.egd=file:/dev/./urandom"
ENV AB OFF=true

COPY target/todo.jar /deployments/app.jar

EXPOSE 8080

run with user 1001 and be prepared for be running in OpenShift too
RUN adduser -G root --no-create-home --disabled-password 1001 \

&& chown -R 1001 /deployments \

&& chmod -R "g+rwX" /deployments \

&& chown -R 1001:root /deployments
USER 1001

ENTRYPOINT "/deployments/run-java.sh"]

FROM fabric8/java-alpine-openjdk8-jre

ENV JAVA OPTIONS="-Xmx64m -Dquarkus.http.host=0.0.0.0 -Dquarkus.profile=java
-Djava.util.logging.manager=org. jboss.logmanager.LogManager"

ENV AB OFF=true

COPY target/lib/* /deployments/lib/

COPY target/*-runner.jar /deployments/app.jar

EXPOSE 8080

run with user 1001 and be prepared for be running in OpenShift too

RUN adduser -G root --no-create-home --disabled-password 1001 \
&& chown -R 1001 /deployments \
&& chmod -R "g+rwX" /deployments \
&& chown -R 1001:root /deployments

USER 1001

FROM registry.access.redhat.com/ubi8/ubi-minimal

WORKDIR /work/

COPY target/*-runner /work/application

#RUN microdnf update && microdnf install procps

RUN chmod 775 /work

EXPOSE 8080

CMD ["./application", "-Dquarkus.http.host=0.0.0.0","-Xms32m",6 "-Xmx64m" ,"-Xmn32m"]

The Dockerfiles has on purpose been constructed to use similar memory settings for Framework A,
Quarkus JVM, and Quarkus Native.

Code and configuration for Lab 1.1

The code in Lab 1.3 is the same as for Lab 1.1 and Lab 1.2; however, to make sure we also make use of the
functionality included in the application Lab 1.3, it will use a different endpoint than Lab 1.1 and Lab 1.2.

d by Red Hat Table of Contents @ @ 34

ANALYZE
THE
FUTURE

=|DC

https://github.com/tqvarnst/idc-quarkus-labs/blob/master/spring-todo/src/main/docker/Dockerfile
https://github.com/tqvarnst/idc-quarkus-labs/blob/master/quarkus-todo/src/main/docker/Dockerfile.jvm
https://github.com/tqvarnst/idc-quarkus-labs/blob/master/quarkus-todo/src/main/docker/Dockerfile.native

Red Hat Quarkus Lab Validation Report

The following endpoint will be used to load test the application for Spring:

@GetMapping
public Iterable<Todo> findAll () {

return todoRepository.findAll () ;

See the code in GitHub

The following endpoint will be used to load test the application for Quarkus JVM and
Quarkus Native:

QGET

public List<Todo> getAll () {
return Todo.listAll () ;

See the code in GitHub

Both endpoints will query the PostgreSQL database for Todo’s and transform the response to JSON.

Content returned from the Spring endpoint:

id
title

6,

"Introduction to Quarkus",

completed': true,

order

0,

url': null,

user
id

{
4,

surname : "Qvarnstrom",

firstname' ' : "Thomas",

email’': "no-reply@redhat.com"

},

categories

{

id

7,

title

1,
"Work"

"Write Evaluation Plan",

completed': true,

order
url
user

1,

null,

{
4,

surname : "Qvarnstrom",

firstname'': "Thomas",

=|DC

ANALYZE
THE
FUTURE

Oy Red Hat Table of Contents @ @ 35

https://github.com/tqvarnst/idc-quarkus-labs/blob/master/spring-todo/src/main/java/com/example/TodoController.java#L22-L25
https://github.com/tqvarnst/idc-quarkus-labs/blob/master/quarkus-todo/src/main/java/com/example/TodoResource.java#L16-L18

Red Hat Quarkus Lab Validation Report

email’: "no-reply@redhat.com"
b,
categories
{
id": 1,
"Work"

id": 8,
title': "Run Lab 1.1 - Startup memory",
completed': false,
order': 2,
url': null,
user': {
id": 4,
surname' : "Qvarnstrom",
firstname'': "Thomas",
email’: "no-reply@redhat.com"
},
categories
{
id": 1,
"Work"

id": 9,
title': "Run Lab 1.2 - Container density",
completed': false,
order': 3,
url’': null,
user': {
id": 4,
surname : "Qvarnstrom",
firstname' ': "Thomas",
email’': "no-reply@redhat.com"
},
categories
{
id": 1,
"Work"

id": 10,

title': "Run Lab 1.3 - Memory usage under load",
completed' : false,

order': 3,

url': null,

:ID the o enr ation keport ' Table of Contents @ @ 36

Red Hat Quarkus Lab Validation Report

user' {
dells B,
surname' : "OHara",
firstname' ' : "John",

email’': "no-reply@redhat.com",

persistent': true
b
categories':
{
id": 1,
name' ' : "Work",

persistent': true

1,

persistent’': true

The performance test is run by increasing the number of connections (referred to as DRIVER_THREADS).
Since the purpose of the test is to measure maximum throughput, the tests are executed without any wait
time between calls. Number of connections is increased step wise to find a point where each runtime

(spring-boot, quarkus-jvm, and quarkus-native) is found. Throughput (reg/sec) and memory are recorded
in each iteration.

Before the actual test is executed, there is a warm-up period to allow for the JVM’s just-in-time
optimization. Note that this is not needed for quarkus-native since quarkus-native has been optimized at
build time instead of runtime and can therefore immediately deliver max throughput.

The actual test environment is using a Jenkins-based environment to schedule the job:

name: todo_ {RUNTIME} {DRIVER THREADS}
http:
host: http://{HOST}: {PORT}
sharedConnections: " {SHARED CONNECTIONS}"
phases:
- rampUp:
always:
users: "{DRIVER THREADS}"
duration: "{RAMP UP DURATION}"
scenario:
- testSequence: &testSequence
- httpRequest:
GET: "/api"
- steadyState:
always:
users: "{DRIVER THREADS}"
startAfter:
phase: rampUp
duration: ”{STEADY_STATE_DURATION}”
scenario:

- testSequence: *testSequence

the file on GitHub.

ANALYZE IDC Lab V
THE
FUTURE Doc

=|DC

oy Red Hat Table of Contents @ @ 37

https://github.com/tqvarnst/idc-quarkus-labs/blob/master/src/main/benchmark/hyperfoilBenchmarkDefinition.hf.yaml

=|DC

Red Hat Quarkus Lab Validation Report

Results from the test are recorded as raw data and then provided to a graph service that will create a
nice-looking graphical representation of the results.

Code and configuration for Lab 2.1

The applications in Lab 2.1 are the same applications that were used in Lab 1, and the code is available
. To deploy the application, a setup script is triggered using the following “make” command:

. The setup script can be found

To run the lab as documented in the operational procedure, an HTTP command line client called

was used. To verify that the application was up and running, the Framework A application uses the
Actuator and the Quarkus applications use SmallRye Health Checks (MicroProfile Health check). Both
Actuator and SmallRye Health Checks are designed to respond with response code 200 OK when
the application is ready to respond to requests.

To measure the time before an application is responding, the procedure details a command that will probe
the application’s health endpoint every 0.5 second, and when successful prints a time stamp. In between
measurements, we are scaling up and scaling down the number of pods from O to 1 on the Kubernetes
cluster.

Code and configuration for Lab 3.1

The applications in Lab 3.1 are the same applications that were used in Lab 1, and the code is available
. This lab requires a container infrastructure like Docker or Podman. The operational procedure

uses a script called SdinEISdl A1 B PRYs] to start the dependent database container as well as
the application containers (e.g., spring, quarkus-jvm, or quarkus-native). The script full source is available

. All three applications are started using the same container limits. etc.

The configuration for the script looks like this:

#
Settings
HHHHH

container runtime=podman

container network name=host

container stats_ extra settings="--no-reset"
container db name=postgresql

container spring name=spring-boot
container spring port=8080
container spring image=spring/todo

container quarkus_jvm_ name=quarkus-jvm
container quarkus_jvm port=8081
container quarkus_jvm_image=quarkus-jvm/todo

ANALYZE IDC Lab Va
THE

FUTURE Doc. #US4620

n Report, Sponsored by Red Hat
- j""15")'“'""\)'F”HM Table of Contents @ @ 38

https://github.com/tqvarnst/idc-quarkus-labs
https://github.com/tqvarnst/idc-quarkus-labs/blob/master/src/main/scripts/oc-setup.sh
https://httpie.org/
https://github.com/tqvarnst/idc-quarkus-labs
https://github.com/tqvarnst/idc-quarkus-labs/blob/master/src/main/scripts/run-lab2.sh

I

Red Hat Quarkus Lab Validation Report

container quarkus_ native_ name=quarkus-native

container quarkus native port=8082

container quarkus native image=quarkus-native/todo

container cpu limit=4
container memory limit=512M

psqgl_db host=localhost
psql_db name=todo-db
psql_db_user=todo
psql_db_password=todo

To run the lab as documented in the operational procedure, an HTTP command line client called

was used. To verify that the application was up and running, the Framework A application uses the
Actuator, and the Quarkus applications use SmallRye Health Checks (MicroProfile Health check). Both
Actuator and SmallRye Health Checks are designed to respond with response code 200 OK when the
application is ready to respond to requests.

To measure the time before an application is responding, the procedure details a command that will probe
the application’s health endpoint every 0.1 second, and when successful prints a time stamp. In between
measurements, we are scaling up and scaling down the number of pods from O to 1 on the Kubernetes
cluster.

Code and configuration for Lab 3.2
This lab requires a configured OpenShift environment with Serverless (Knative) installed.

At the time of this lab evaluation, OpenShift Knative was still not fully released and a Tech Preview version
of OpenShift Knative was used. That version of OpenShift Serverless used a non-optimized scheduler,?
which introduces an overhead of approximately 10 seconds to start the container. Since this report targets
differences in performance, memory, and start-up time between different applications, a Go application
was introduced as a reference application to use for comparison. After three measurements, a median
value was determined for how long it takes to start a container running a Go application. This value was
then deducted from the values for https://httpie.org/, Quarkus JVM, and Quarkus Native.

The applications used for Lab 3.2 are the same applications used in Lab 1.1. The script used in the
operational procedure for Lab 3.2 to deploy all four applications to OpenShift can be found

3. OpenShift Knative has, between the lab execution and the publishing of this report, improved the scheduling time, and actual start-up times are now much lower

IDC

ANALYZE IDC Lab Validation Report, Sponsored by Red Hat
THE Table of Contents
FUTURE Doc. #US46203820 @ @ 39

https://github.com/tqvarnst/idc-quarkus-labs/blob/master/src/main/scripts/oc-serverless-setup.sh

About IDC

International Data Corporation (IDC) is the premier global provider of market intelligence, advisory
services, and events for the information technology, telecommunications, and consumer technology
markets. IDC helps IT professionals, business executives, and the investment community make
fact-based decisions on technology purchases and business strategy. More than 1,100 IDC analysts
provide global, regional, and local expertise on technology and industry opportunities and trends

in over 110 countries worldwide. For 50 years, IDC has provided strategic insights to help our clients
achieve their key business objectives. IDC is a subsidiary of IDG, the world’s leading technology
media, research, and events company.

Q) IDC Custom Solutions

This publication was produced by IDC Custom Solutions. The opinion, analysis, and research results
presented herein are drawn from more detailed research and analysis independently conducted
and published by IDC, unless specific vendor sponsorship is noted. IDC Custom Solutions makes
IDC content available in a wide range of formats for distribution by various companies. A license to
distribute IDC content does not imply endorsement of or opinion about the licensee.

ANALYZE
THE
FUTURE

I

IDC

IDC Research, Inc.

5 Speen Street
Framingham, MA 01701
USA

508.872.8200

1

Copyright 2020 IDC. Reproduction is forbidden unless authorized. All rights reserved.

Permissions: External Publication of IDC Information and Data

Any IDC information that is to be used in advertising, press releases, or promotional materials requires prior written approval

from the appropriate IDC Vice President or Country Manager. A draft of the proposed document should accompany any
such request. IDC reserves the right to deny approval of external usage for any reason.

Doc. #US46109520

O,

http://idc.com
https://twitter.com/IDC?ref_src=twsrc%5Egoogle%7Ctwcamp%5Eserp%7Ctwgr%5Eauthor

	Button 4:
	Button 2:
	Page 2:

	Button 3:
	Page 2:

	Button 6:
	Page 3:
	Page 4:
	Page 5:
	Page 6:
	Page 7:
	Page 8:
	Page 9:
	Page 10:
	Page 11:
	Page 12:
	Page 13:
	Page 14:
	Page 15:
	Page 16:
	Page 17:
	Page 18:
	Page 19:
	Page 20:
	Page 21:
	Page 22:
	Page 23:
	Page 24:
	Page 25:
	Page 26:
	Page 27:
	Page 28:
	Page 29:
	Page 30:
	Page 31:
	Page 32:
	Page 33:
	Page 34:
	Page 35:
	Page 36:
	Page 37:
	Page 38:
	Page 39:

	Button 7:
	Page 3:
	Page 4:
	Page 5:
	Page 6:
	Page 7:
	Page 8:
	Page 9:
	Page 10:
	Page 11:
	Page 12:
	Page 13:
	Page 14:
	Page 15:
	Page 16:
	Page 17:
	Page 18:
	Page 19:
	Page 20:
	Page 21:
	Page 22:
	Page 23:
	Page 24:
	Page 25:
	Page 26:
	Page 27:
	Page 28:
	Page 29:
	Page 30:
	Page 31:
	Page 32:
	Page 33:
	Page 34:
	Page 35:
	Page 36:
	Page 37:
	Page 38:
	Page 39:

	Button 5:

