
1redhat.com/ja E ブック象にダンスを教える方法

アジャイル・
インテグレーション
エンタープライズ・アーキテクチャのブループリント

E ブック

Steve Willmott、David Codelli 共著
Deon Ballard 編集

http://redhat.com/ja

2jp.redhat.com E ブック アジャイル・インテグレーション：エンタープライズ・アーキテクチャのブループリント

目次

計画至上時代の終焉：組織とアジリティ ... 4

アジリティのインフラストラクチャ ... 6

分散インテグレーション .. 7

コンテナ .. 9

API ... 10

アジャイル・インテグレーションのアーキテクチャ ...12

チーム体制 ..12

インフラストラクチャ・アーキテクチャ ..12

アジャイルな組織と文化 ...14

まとめ：アジャイル・インテグレーションのデリバリー ...18

http://jp.redhat.com

 ビジネスを成功に導く要因として、変化への対応力の比重は右肩上がりで大きくなっています。破壊
的革新をもたらすプレーヤーが市場に参入し、テクノロジーが消費者の期待を大きく左右する状況にお
いて、組織がこれまでよりもはるかに短いサイクルで計画を変更する必要性が高まっています。その中
で、最新のソフトウェア・アーキテクチャとプロセスを取り入れた組織はこの変化に対応し、その市場の
勝者になることができるでしょう。

 アジャイル・インテグレーションと呼ばれる新しいアーキテクチャのフレームワークは、コンテナ、分
散インテグレーション、アプリケーション・プログラミング・インタフェース (API) の 3 つの重要なアーキ
テクチャ機能を統合します。このフレームワークは、これらの重要な機能がアジリティを促進し、組織内
の新しいプロセスを強化して競争上の優位性を生み出す方法を規定するものです。

 旅行やホスピタリティなどの業界は、新たなビジネス手法によって変革を果たしました。現在は新し
いサービスが提供されており、消費者がサービスを利用する方法も以前とは変わりました。この破壊的
変化の傾向は、金融サービスから政府機関に至るまで、他の主要産業にも広がっており、ビジネスと顧
客の相互作用に関する新たなテクノロジーと考え方によって高まっています。こうした新しいサービスを
提供するために、従来型の組織は自社の IT テクノロジーを根本的に変革することを迫られています。

 その流れについていくためには、ソフトウェアシステムの変更を迅速に計画および実行する能力が必
要です。

 現在求められるスピードでのソフトウェア提供には、アジャイルなインフラストラクチャ基盤が必要に
なります。ここでの「アジャイル」はアジャイルソフトウェア開発を指すのではなく、アジャイルの従来の
意味、つまり、柔軟で、より迅速に動作できることを指します。

 1 オックスフォード英語辞典

図 1. アジャイルの定義

敏捷

足が速い

俊足

融通が利く

弾力的

柔軟

俊敏 曲芸的

同義語

アジャイル

形容詞。すばやく簡単に
変化できるさま1

ag•ile, ‘aj l/e

3jp.redhat.com E ブック アジャイル・インテグレーション：エンタープライズ・アーキテクチャのブループリント

計画至上時代の終焉：組織とアジリティ

アジリティのインフラストラクチャ

分散インテグレーション

コンテナ

API

アジャイル・インテグレーションの

アーキテクチャ

チーム体制

インフラストラクチャ・アーキテクチャ

アジャイルな組織と文化

まとめ：アジャイル・インテグレーションの

デリバリー

http://jp.redhat.com

 アジャイル手法は今日までソフトウェア開発手法として注目され、アプリケーション作成方法の改善
および最適化に活用されてきました。DevOps2 手法は、それをアプリケーションのデプロイに取り入れ
ようとしました。

 しかしこれまでのところ、DevOps そのものは多くの場合、主に組織が自社開発した新しいソフト
ウェア・アプリケーションに適用されるのみにとどまっています。

 インフラストラクチャのアジリティはそれよりさらに大きなものであり、レガシーソフトウェアを含む
すべての IT システムを包含する環境を作り出します。アジャイルなインフラストラクチャは、既存システ
ムの複雑さ、さまざまなデータタイプ、データストリーム、および顧客の期待を取り入れ、それらを統合
する方法を見つけるアプローチです。これは、本質的にはインテグレーションの問題です。

 価格設定を一晩で変更したり、新しい製品を提供したりすることができる組織は、何段階にもわた
る手動の検証手順を経て 3 カ月後にやっと公開に至る企業に比べて、圧倒的に有利です。

 これが、アジャイル・インテグレーションです。インテグレーションは、インフラストラクチャのサブ
セットではありません。ハードウェアとプラットフォームを備えたデータとアプリケーションを含むイン
フラストラクチャへの概念的なアプローチです。インテグレーション・テクノロジーをアジャイルおよび

DevOps テクノロジーと連携させることにより、チームが市場の要求に応じて迅速に変更できるプラット
フォームの作成が可能になります。

計画至上時代の終焉：組織とアジリティ
 「我々が知っている形での計画は、今や意味をなさなくなっています」とは、2017 Red Hat Summit で、
Red Hat の CEO、Jim Whitehurst (ジム・ホワイトハースト) が行った基調講演でのメッセージです。「よ
くわからない環境での計画は効果的ではありません。」3 ビジネス環境が迅速化し、変化が増えてくる
と、計画はすぐに破綻してしまうので、特定のアクションに縛られていると大きな代償が降りかかってき
ます。

 つまり、情報が少ないほど、あるいは環境の安定性が低いほど、計画の価値は低くなります。

何を知らないのかがわからない
 インフラストラクチャの計画には通常、長期的なアプローチが必要であり、時には数年にわたること
もあります。数年にわたる計画では、市場の変化に合わせて革新したり、方向転換したりする能力が損
なわれる可能性があります。Jim Whitehurst が示唆した「計画の無意味さ」は、より迅速な計画立案と
それらを実行する能力に帰着します。計画のスパンが短く、新しい計画を開拓する環境です。

 6 カ月あるいは 24 カ月といったの長期の開発サイクルを習慣としているチームは、このような急激
な変化に対応しきれない可能性があります。旧態依然とした構造の組織が、まったく新しい方法で市場
にアプローチしている新興企業と競わなければならない場合、この問題はさらに大きなものとなりま
す。Netflix と Blockbuster、または Uber と従来のタクシーサービスといったわかりやすい事例もあり
ますが、スタートアップによる破壊的影響は、1993 年の Amazon や 1980 年代のパーソナルコンピュー
ターに始まる情報化時代の最も初期の時期まで遡ります。

 2 DevOps でイノベーションを加速 https://www.redhat.com/ja/insights/devops

 3 2017 Red Hat Summit での Jim Whitehurst の基調講演
https://www.cbronline.com/news/enterprise-it/software/red-hat-ceo-planning-know-dead/

「顧客を

継続的に獲得して

サービスを提供し、
維持するためには、
エンゲージメント

システムと

レコードシステムの

間のインタフェースが

よりアジャイルになる

ことが必要です。ここで

言うアジャイルとは、
スケーラビリティや、
既存の API に新しい

属性を追加したり、
今後のためにより多くの

コンテキストを提供

したりするような、
迅速に適応できる能力

という意味での

アジャイルです。」

THE FORRESTER GROUP

 HENRY PEYRET 氏

Henry Peyret 「TechRadarTM:
Integration Technologies, Q2

2015」Forrester Research, Inc.
2015 年 6 月 23 日

4jp.redhat.com E ブック アジャイル・インテグレーション：エンタープライズ・アーキテクチャのブループリント

https://www.redhat.com/ja/insights/devops
https://www.cbronline.com/news/enterprise-it/software/red-hat-ceo-planning-know-dead/
http://jp.redhat.com

業種 従来のサービス 破壊的革新企業 影響

運輸 タクシー、

公共交通機関
Uber、Lyft 小規模な地域密着型企業には

再現することがほぼ不可能な

均一化した顧客体験を創出

ウェルスマネジメント 投資会社 自動化された

ファンド
ファンド管理の差別化要因を

人員からアルゴリズムにシフト

小売 実店舗での買い物 Amazon 購買習慣をオフライン購入から
オンライン購入に変更

検索エンジン Google、ブラウザベース
の検索

音声検索 Google の主要な販売チャネルに
影響、新規参入の余地を作った

 スタートアップと破壊的革新が持つ強みは、インフラストラクチャ、チーム、アプリケーション、アーキ
テクチャ、さらにはそれらのデプロイメントのプロセスを自由に構築できることです。革新的なアイデア
を持っているというだけではなく、彼らはレガシー・インフラストラクチャ、あるいは Rachel Laycock

氏が冗談めかして言うところの「レガシーな人たち」4 による制限を受けないので、そのアイデアを実行
することができます。彼らはアジャイルです。

 このような組織は、何か新しいものを構築する能力に加えて、変化に対応できるシステムも構築しま
す。そうしたソフトウェア・インフラストラクチャは差別化に不可欠な要素であり、市場のニーズの変化に
応じて、システムのほぼあらゆる部分を交換、更新、あるいは削除できます。新興企業でも時とともに
適応能力が低下してくる場合がありますが、トップを争う組織はあらゆる方策を駆使して、変化する力
を守ります。

課題に立ち向かう
 急速に変化する環境で成功するためには、IT インフラストラクチャ全体が俊敏に機能しなければな
りません。

 変化は次の 2 つのレベルで生じる必要があります。

• アーキテクチャ設計からチームコミュニケーションに至るまでのアジャイルプロセスの組織的および
文化的サポート

• 機能を迅速にアップグレード、追加、および削除する能力を生み出すテクニカル・インフラストラク
チャ

 技術的および文化的変化は、アジリティを生み出すものではなく、アジリティの基盤になるものです。

 eBay のプロダクトマネージャー、Marty Cagan 氏は、すべてのプロジェクトに対して彼が税と呼ぶも
のを適用しています。新しいインフラストラクチャ・プロジェクトに取り組むために、あらゆるルーチン
プロジェクトとは別の時間とリソースを確保し5、新しいプロジェクトとイノベーションを最優先事項とし
ます。

 4 Rachel Laycock「Continuous Delivery」Red Hat Summit – DevNation 2016 午後のゼネラルセッション 2016 年 7 月 1 日
カリフォルニア州サンフランシスコ https://youtube.com/watch?v=y87SUSOfgTY

 5 Marty Cagan「Inspired: How to Create Products Customers Love」Wiley Press 2017 年

表 1: 各業種の破壊的革新

5jp.redhat.com E ブック アジャイル・インテグレーション：エンタープライズ・アーキテクチャのブループリント

https://youtube.com/watch?v=y87SUSOfgTY
http://jp.redhat.com

「市場投入までの

時間とアジリティで

競合を打ち負かすことが

できなければ、負けは

決定的です。新しい機能は

常にギャンブルです。
運が良ければ、

リリースしたうちの

10% で利益を得ることが

できます。ですから、
これらの機能の市場投入と

テストの実施が早いほど、
勝ち目は大きくなります。
ついでに元金回収も

迅速になります。
つまり、ビジネスの

収益化が早くなるという

ことです。」

 THE PHOENIX PROJECT

GENE KIM 氏

Gene Kim、Kevin Behr、George
Spafford「The Phoenix Project:
A Novel about IT, DevOps, and

Helping Your Business Win」
オレゴン州ポートランド：

IT Revolution Press 2013 年

アジリティのインフラストラクチャ

 さまざまなグループがバラバラな方向性で改善方法を模索する状況では、新しいテクノロジーを次々
に使用しても、アジャイルなインフラストラクチャの作成にはあまり役立ちません。首尾一貫したトップ
レベルの目標がなければ、どの新機能の組み合わせが組織の全体的な機能に真の違いをもたらすの
かを識別することは困難です。

アジャイル・インテグレーションの 3 つの柱
 アジャイル・インテグレーションのアプローチは、3 つの主要なテクノロジーによって支えられてい
ます。

1. 分散インテグレーション： エンタープライズの作業とデータフローを反映した数十のハイレベルな
統合パターンを用意します。これらの統合パターンをコンテナ内にデプロイすると、特定のアプリケー
ションやチームに必要なスケールで必要な場所に統合パターンをデプロイできます。これは従来の
集中型インテグレーション・アーキテクチャではなく、分散インテグレーション・アーキテクチャであ
り、各チームが必要な統合パターンをアジャイルに定義およびデプロイすることを可能にします。

2. API： 安定し、適切に管理された API は、チーム間のコラボレーション、開発、運用に多大な効果を
もたらします。API は、安定した再利用可能なインタフェースで主要なアセットをラップし、そのイン
タフェースが組織全体で、またはパートナーや顧客とともに再利用するためのビルディングブロック
として機能するようにします。API はコンテナとともに多様な環境にデプロイできるため、さまざま
なユーザーがさまざまな API セットと対話することができます。

3. コンテナ： API と分散インテグレーション・テクノロジーの両方で、コンテナは基盤となるデプロイ
メント・プラットフォームとして機能します。コンテナを使用すると、開発、テスト、および保守が容
易かつ一貫した方法で、特定の環境内に正確なサービスをデプロイできます。コンテナは DevOps

環境とマイクロサービスの主要なプラットフォームなので、コンテナをインテグレーション・プラット
フォームとして使用すると、開発チームとインフラストラクチャチームの関係は透明性が高く協力的
なものになります。

図 2. アジャイル・インテグレーションの 3 つの柱

ツールとプロセス

分散
インテグレーション

API コンテナ

スケーラビリティ再利用性柔軟性

• 軽量
• パターンベース
• イベント指向
• コミュニティソース

• クラウドネイティブの
 ソリューション
• 個別にデプロイ可能な、
 無駄のないアーティファクト
• コンテナベースの
 スケーリングと高可用性

• 適切に定義され、再利用
 可能で、かつ適切に
 管理されたエンドポイント
• エコシステムの
 アクセシビリティ

6jp.redhat.com E ブック アジャイル・インテグレーション：エンタープライズ・アーキテクチャのブループリント

http://jp.redhat.com

 これらの 3 つのテクノロジー は、IT インフラストラクチャのアジリティ向上を実現するものです。とい
うのも、これらの機能がそれぞれ抽象度を上げることで、さまざまなチームの協業が可能となるためで
す。API と分散インテグレーションを備えたコンテナプラットフォームを使用すると、インテグレーショ
ンそのものからインテグレーションの実装が抽象化されます。API と分散インテグレーション・パター
ンにより、多くの人に理解できるレベルで特定のアセットがパッケージ化されるため、チームのアジリ
ティが向上します。基盤となるインフラストラクチャを理解または変更する必要はありません。

 これらの各テクノロジーはそれぞれ、特定のインテグレーションの課題に大きなアジリティをもたら
します。併用すると、相乗効果が得られます。テクノロジーを強調することは文化です。DevOps のプラ
クティス、特に自動化やデプロイメントのプロセスと組み合わせることで、テクノロジーのメリットが高
まります。

分散インテグレーション
 現在の IT システムの最大の課題の 1 つは、組織全体に散らばったアプリケーションを接続する必要
があることです。インテグレーション・サービスの難しさは、ますます複雑で集中化したインテグレー
ションハブを生み出しています。多くの場合、エンタープライズ・サービス・バス (ESB) として実装されて
いるこれらのハブは、急速な変化に対応できる柔軟性に乏しく、非常に複雑なボトルネックになってい
ます。

 分散インテグレーションは、前世代の ESB と同じ技術目標の多くを達成できますが、その方法は組
織内のチームに対してより適応するものです。ESB と同様、分散インテグレーション・テクノロジーは、
変換、ルーティング、解析、エラー処理、およびアラート機能を提供します。違いは、インテグレーショ
ンのアーキテクチャです。

 分散インテグレーション・アーキテクチャは、各インテグレーションのポイントを、より大きな一元化
された統合アプリケーションの一部ではなく、個別の一意のデプロイメントとして扱います。組織全体
にデプロイされた他のインテグレーションに影響することなく、インテグレーションを特定のプロジェ
クトまたはチーム向けにローカルにコンテナ化してデプロイすることができます。この分散アプロー
チにより、アジャイルプロジェクトに必要な柔軟性が得られます。また、基盤となるコンテナプラット
フォームを使用することにより、アジャイルチームまたは DevOps チームと同じツールチェーンを使用
し、チームが自身のツールやスケジュールとの統合を管理する能力を高めます。これは基本的にインテ
グレーションをマイクロサービスとして扱い6、開発とリリースのインテグレーションを迅速化します。

 これには、開発者ツールおよびプロセスとの連携が不可欠です。従来のソフトウェア・インストラク
チャは 1 つの部門の特殊なユーザーセットによって開発および管理され、ソフトウェア開発プロセスと
は別に展開される集中型のものでした。しかし分散インテグレーションはそれとはまったく異なるアプ
ローチであり、それが核となっています。共通のプラットフォームとツールを使用してインテグレーショ
ン・アーキテクチャを配布することにより、プロジェクトレベルですべての開発者がアクセスできるよう
になり、インテグレ―ションが必要な時にはいつでもどこでも軽量のデプロイメントを実行できます。

7jp.redhat.com E ブック アジャイル・インテグレーション：エンタープライズ・アーキテクチャのブループリント

http://jp.redhat.com

 ESB を使用するためには、開発環境と運用環境で使用されているあらゆるツールに加えて、ライフサ
イクル全体でその ESB のツールを使用する必要があります。この制限により、運用は扱いにくく非効率
的でエラーが発生しやすいものになってしまいます。

メッセージングによるインテグレーションの強化
アーキテクチャ上、分散インテグレーションは、インテグレーションをマイクロサービス
として扱います。マイクロサービスはコンテナ化が可能で、簡単かつローカルにデプロイ
でき、迅速なサイクルでのリリースが可能です。

インテグレーション・テクノロジーは、この種の軽量なマイクロサービスベースのアーキ
テクチャをサポートできなければなりません。Red Hat® Fuse によって、ユーザーはイン
テグレーションをコードとして扱うことができ、コンテナ内を含めてどこででも実行する
ことができます。

さらに、Fuse は Red Hat JBoss AMQ にバンドルされており、メッセージング・インフラ
ストラクチャを提供します。強力なメッセージング・インフラストラクチャにより、イベン
トとデータがシステム間で効果的にルーティングされます。メッセージングはマイクロ
サービスを備えた重要なアーキテクチャツールです。なぜなら、メッセージングの非同
期の性質には依存関係がないからです。

このインテグレーションとメッセージングの組み合わせは、より効果的なルーティング、
複数の言語とプロトコルのサポート、非同期スループット、およびデータ管理の改善に
よって、インテグレーション・アーキテクチャの全体的なパフォーマンスを向上します。

「ソフトウェア

分野では、何か

手間のかかる作業を

しなければならない時、
その手間を減らすために

有効なのは、その作業の

頻度を減らすことでは

なく、増やすことです。」

「CONTINUOUS DELIVERY: RELIABLE

SOFTWARE RELEASES THROUGH

BUILD, TEST, AND DEPLOYMENT

AUTOMATION」
DAVID FARLEY 氏

David Farley、Jez Humble
「Continuous Delivery: Reliable

Software Releases Through
Build, Test, and Deployment

Automation」Addison-Wesley
Professional 2010 年

ライフサイクルの
段階

ESB、ほとんどの
IPAAS (INTEGRATION
PLATFORM-AS-A-SERVICE)

分散インテグレーション・
テクノロジーのサポート

バージョン管理 プロプライエタリー GitHub、その他

ビルド プロプライエタリー Maven、その他

デプロイ プロプライエタリー コンテナとその他の DevOps ツール

管理とスケーリング プロプライエタリー コンテナとその他の DevOps ツール

表 2. ソフトウェア・ライフサイクルの各段階におけるインテグレーション・テクノロジーの
比較

8jp.redhat.com E ブック アジャイル・インテグレーション：エンタープライズ・アーキテクチャのブループリント

http://jp.redhat.com

コンテナ

 仮想化、クラウド、およびコンテナは、同様の目標を持つ類似のテクノロジーです。これらのテクノロ
ジーは、物理ハードウェアからソフトウェアのオペレーティング環境を抽象化するため、ハードウェア上
でより多くのインスタンスをスタックし、使用率、スケール、デプロイメントをより効率的に管理できま
す。しかし、それらが課題に対処する方法は異なります。仮想化は、オペレーティングシステム層を抽象
化します。クラウドは、永続的な専用サーバーインスタンスの概念を不要にします。コンテナは、単一の
アプリケーションを実行するのに十分なオペレーティング環境とライブラリを定義します。

 コンテナ技術を活用した、より規範的で軽量なアプローチにより、コンテナは最新のソフトウェア環
境にとって理想的なツールになっています。各インスタンスは、オペレーティングシステムから各ライブ
ラリに含まれる正確なバージョンまで、不変の定義を使用します。インスタンスごとに環境の再現性と
一貫性が高くなるため、継続的インテグレーションと継続的デリバリー (CI/CD) のパイプラインに最適
です。さらに、コンテナイメージは単一のアプリケーションに必要なもののみを定義するため、コンテナ
はマイクロサービスに一致し、コンテナ・オーケストレーションは大規模なマイクロサービス・インフラス
トラクチャのデプロイメントと管理も調整することができます。

 軽量で再現性のある組み合わせにより、コンテナはアジャイル・インテグレーションに最適なテクノ
ロジー・プラットフォームになります。

「しばしば

デジタル変革と呼ばれる

新たな競争相手が、
組織による

IT アーキテクチャの

再考、オンプレミスの

インフラストラクチャ、
クラウドなどへの

ワークロードの再分配、
および相互運用による

ビジネス戦略と運用の

サポートの必要性を

高めています。
このような変化

すべてが

インテグレーションへの

新しいアプローチを

必要としており、
このアプローチを

『ハイブリッド・

インテグレーション』
と呼んでいます。」

 451 GROUP

CARL LEHMANN 氏

Carl Lehman, 451 Research
「The Disruptive Role of

Integration PaaS and APIs in the
New Hybrid Integration Platform

Market」 2017 年 7 月
https://451research.com/

report-long?icid=3862

トレンドについていく
コンテナの導入は拡大していますが、どの程度、そしてなぜ拡大しているのでしょうか。
451 Research は、市場で 250% の成長を予測していますが7、その数値は支出を表すも
ので、デプロイメントの拡大規模ではありません。実際のデプロイメントを測定するのは
少々困難です。Red Hat が委託した Bain の調査では、現在顧客の約 20% が実稼働環
境でコンテナをデプロイしており、開発環境とテスト環境でほぼ同じ数値を示すことが
わかっています。しかし、コンテナの評価や概念実証を行っている割合は 30% を超え
ています。8

このように不明瞭な結果になる理由の一端は、「コンテナを使用する」という表現の指
す内容のあいまいさにあります。Enterprisers Project では、4 つの異なるコンテナ導
入のパターンを概説しています。そのパターンとは、一般的な開発あるいはデプロイメン
トのプラットフォームとして使用、クラウドネイティブまたはマイクロサービスのプラット
フォームとして使用、ハイブリッドクラウド内での使用、イノベーションプロジェクトでの
使用の 4 つです。9 コンテナの使用方法により、「導入済みである」と考えるかどうかが
変わってしまう可能性があるのです。

アジャイル・インテグレーションのアイデアは、従来の運用をサポートできるインフラスト
ラクチャ・プラットフォームを作成することです。このプラットフォームは、すべての実装パ
ターンから借用することができますが、中核的な機能は、プラットフォーム、すなわち新し
いプロジェクトと既存のサービスの両方の基盤となることであり、これは変わりません。

 7 Cloud-Enabling Technologies Monitor レポートに基づく 451 Research インフォグラフィック 2017 年 1 月
https://451research.com/images/Marketing/press_releases/Application-container-market-will-reach-2-
7bn-in-2020_final_graphic.pdf

 8 「Bain survey: For Traditional Enterprises, the Path to Digital and the Role of Containers」2016 年 11 月
https://www.redhat.com/ja/resources/path-digital-containers

 9 https://enterprisersproject.com/article/2017/8/4-container-adoption-patterns-what-you-need-know

9jp.redhat.com E ブック アジャイル・インテグレーション：エンタープライズ・アーキテクチャのブループリント

https://451research.com/report-long?icid=3862
https://451research.com/report-long?icid=3862
https://451research.com/images/Marketing/press_releases/Application-container-market-will-reach-2-7bn-in-2020_final_graphic.pdf
https://451research.com/images/Marketing/press_releases/Application-container-market-will-reach-2-7bn-in-2020_final_graphic.pdf
https://www.redhat.com/ja/resources/path-digital-containers
https://enterprisersproject.com/article/2017/8/4-container-adoption-patterns-what-you-need-know
http://jp.redhat.com

API

 ほとんどの情報インフラストラクチャは、数百あるいは数千ものシステム、アプリケーション、アセッ
トを包含していますが、これらのシステムが相互作用することは非常に困難になる可能性があり、IT 管
理者がどのシステムが利用可能かさえわからないこともあります。

 API は、インテグレーション・テクノロジーを使用して接続できるすべてのアセットのインタフェースで
あり、アプリケーションが相互に通信する方法を設定する一連の定義またはルールです。

 組織が、集中型のインテグレーション・テクノロジーを中心としたアプローチから分散型アプローチ
に移行するにつれて、セルフサービスが重要な優先事項になります。アジャイルチームには、社内外で
開発されたサービスを探し、テストし、使用するための権限と自律性が必要です。強力な API 機能が、
この権限と自律性をチームに与えます。API によって、チームは必要なインテグレーションを実現し、組
織はセキュリティ、承認、使用ポリシーを確実に管理および実行できます。また、API はチームに対し、
インテグレーションの設計方法に関するレファレンスを提供します。

 API は最終的なアプリケーションとは異なります。アプリケーションがどのように相互作用するかを
定義するものであり、個々の開発者は API をプロジェクト内でビルディングブロックとして使用します。
API は、開発者とチームの共通言語となります。組織は、サービスの新しく革新的な使用を生み出すた
めに共有および協力するコミュニティを育成することにさえも、API を使用できます。

コンテナにはオーケストレーションが必要
マイクロサービスが単一の個別の機能に相当するように、各コンテナは単一のサービス
あるいはアプリケーションに相当します。マイクロサービス・アーキテクチャでは、数十ま
たは数百もの個別のサービスが存在する可能性があり、それらは、開発環境、テスト環
境、および本番環境にわたって複製されます。

それほど多数のインスタンスを扱う場合、コンテナ環境が効果的に機能するためには、
インスタンスをオーケストレーションして高度な管理タスクを実行する機能が欠かせま
せん。

Red Hat OpenShift は、Docker コンテナを Google の Kubernetes オーケストレーショ
ン・プロジェクトと組み合わせます。また、インスタンス管理、監視、ロギング、トラフィッ
ク管理、自動化などの集中管理機能も提供しますが、このような機能は、コンテナだけ
の環境ではほぼ実現不可能です。

Red Hat OpenShift は、セルフサービスカタログ、インスタンス・クラスタリング、アプリ
ケーションの永続性、プロジェクトレベルの分離など、開発者にとって使いやすいツール
も提供します。

この組み合わせにより、特に安定性やテストといった運用の要件と開発者ニーズのバラ
ンスが取れ、使いやすさと迅速なデリバリーが可能になります。

 従来のインテグレーション・アプローチは、高度に集中化した構造であり、ESB はインフラストラク
チャの主要ポイントに配置されていました。分散インテグレーションと API 管理の両方に、特定の場所ま
たはチームに必要な機能のみをデプロイする分散型アーキテクチャがあります。コンテナは、不変の性
質により環境間でイメージとデプロイメントの一貫性を維持し、両方のアプローチの基盤となるプラット
フォームとして機能するので、不透明な依存関係や不一致がなく迅速にデプロイまたは置換できます。

 分散アーキテクチャの鍵は、それがインテグレーションと API のどちらを備えたものかに関わらず、
複雑な承認プロセスなしで新しいサービスを設計およびデプロイする方法が必要だということです。

 コンテナによって、分散インテグレーションと API をマイクロサービスとして扱うことができます。開
発チームと運用チームの両方に共通のツールを提供し、管理されたリリースプロセスで迅速な開発プ
ロセスを使用する機能を提供します。

10jp.redhat.com E ブック アジャイル・インテグレーション：エンタープライズ・アーキテクチャのブループリント

http://jp.redhat.com

適切な API プラットフォームは開発者の生産性を高める
API が大きなパワーを持つのは、社内外を問わず多数のユーザーがその API を使用でき
るからです。Red Hat 3scale API Management Platform はそうしたすべてのユーザーを
支援するツールであり、開発者が API の作成に共同で取り組むための開発者ポータルと
それらの API を公開できる管理者ポータルを提供します。

3scale API Management Platform は、認証提供、主要なクラウドプロバイダーとのイン
テグレーション、コンテナ内での実行により、これらの API を外部ユーザーが使用でき
るようにします。

API 戦略とは、API 設計とその API を公開する方法を組み合わせたものです。3scale API
Management Platform、特にコンテナプラットフォーム上の 3scale は、その戦略を実行す
る手段となります。

API 利用者
インターネット パブリッククラウド

認可および
レポーティング

その他の公的に
アクセス可能な
エンドポイント

API Management
Platform

お客様の API チーム

開発者
ポータル

管理
ポータル

開発者

3scale

図 3. API 管理、エンドポイント、パブリッククラウドの概念図

 利用者層ごとにさまざまな API や API のサブセットを提供することもできます。ベンダーのニーズ
は、内部の開発チームやコミュニティ開発者のニーズとは必ずしも一致しません。API 管理には、アプリ
ケーションやユーザーグループ用の API の設計、および API のライフサイクルの管理が含まれます。API

は製品として管理されることが多くなり、API ごとに異なるチームが責任を負いますが、これらすべての
リソースで統一性と使いやすさを確保する必要があります。

 分散インテグレーションと同様、コンテナは、API 開発をより大きな開発および運用プロセスやツー
ルと連携する方法で、API を開発、デプロイ、管理するためのプラットフォームとして機能することがで
きます。

11jp.redhat.com E ブック アジャイル・インテグレーション：エンタープライズ・アーキテクチャのブループリント

http://jp.redhat.com

アジャイル・インテグレーションのアーキテクチャ
チーム体制
 アジャイル・インテグレーションの柱となるテクノロジーは、デプロイされ、再利用可能な機能として
チームが利用できるようになったときに最大限の効果を発揮します。

 ここでいう機能とは、承認されたグループがテクノロジーをセルフサービスで使用し、組織のガイドラ
インに容易に従い、ベストプラクティス情報にアクセスすることができる機能のことを指します。情報アー
キテクトや IT 管理者は、個々のチームに対して次のような明確なプロセスを定義する必要があります。

• 広く利用可能な使用ガイドラインを提供する。

• 必要に応じて使用およびベストプラクティスのルールを適用しながらも、それらのルールを超えた自
由な実験を許可する。

• プロトタイプからテスト、実稼働、更新、廃止までの移行プロセスを明確に定義する。

• 新しいデプロイメントと開発のための情報共有を許可する。

• インフラストラクチャチームを全プロセスにかかわらせるのではなく、セルフサービス機能のイネーブ
ラーおよびプロバイダーとして使用する。

 たとえば、ソフトウェアチームに対しては、新しい API を開発、テスト、準備して完全なセルフサービ
ス方式で公開できるようにする必要がありますし、他のグループへの通知やドキュメンテーション更新
のプロセスも必要です。公開や実稼働に移行する前に、何らかの処理や他のチームとのクロスチェック
が行われる場合がありますが、このインフラストラクチャではそのプロセスを可能な限り自動化すべき
です。

インフラストラクチャ・アーキテクチャ

図 4. アジャイル・インテグレーション・テクノロジーとアプリケーションスタックの相関図

カスタム
アプリケーション

モバイル
アプリケーション

インテリジェント・
データアプリケーション

プロセス指向
アプリケーション

統合

API

コンテナ

市販の
アプリケーション

12jp.redhat.com E ブック アジャイル・インテグレーション：エンタープライズ・アーキテクチャのブループリント

http://jp.redhat.com

 コンテナ、API、インテグレーションは連携して、組織の内部ソフトウェアエコシステムの強固な
基盤層となります。その基盤層とは多くの場合、外部インテグレーションのアクセスポイントです。

 異なるタイプのシステムがさまざまな再利用可能なエンドポイントを公開します。各エンドポイ
ントは、再利用可能な API として表示され、その多くがコンテナ内で実行され、スケーラビリティ
と容易なデプロイメントを実現します。インテグレーションは、個々のサービスのグループを統合
するか、組織のさまざまな部分から結果を収集することにより、システム全体で必要な場所に変
換、構成、あるいはインラインのビジネスロジックを提供します。

 統合アプリケーションは、エンドユーザー・アプリケーションを供給する前にさらに集約するこ
とができます。

図 5. コンテナ、API、および分散インテグレーションによるインフラストラクチャ設計

API

コンテナベース

スケーラブルで
軽量な
マイクロサービス

外部リソース消費

SaaS
レガシー

レガシー
システム
サポート

セルフサービス
機能

構成された
マイクロサービス

SaaSモバイル パートナー

 すべてのシステムを小さな断片に分割したり、API 抽象化の複数のレイヤーを通過させたりすること
は想定していません。そのような運用は、効率の低下、遅延の増加、不要な複雑さの追加につながる可
能性があります。一部の分野では、既存のレガシー ESB 機能を保持して特定のアプリケーション間の
接続を保持することが適切な選択になる場合があります。分散システム間の依存関係も、適切なツー
ルを使用して追跡および管理する必要があります。

 ただし、システム全体では、コンテナ、API、およびインテグレーションの観点からアーキテクチャを
作り直すことが、各サービス、統合ポイント、顧客の対話にとって正しい選択になり得ます。たとえば、
大量のインバウンドリクエストを処理する場合、ボトルネックとなりうる単一の ESB を経由させること
なくセキュリティをチェックし、適切なバックエンドサービスに直接ルーティングすることもできます。

13jp.redhat.com E ブック アジャイル・インテグレーション：エンタープライズ・アーキテクチャのブループリント

http://jp.redhat.com

 また、ハイブリッドの分散クラウド環境では、問題とされるバックエンドシステムの多くが、物理的に
異なる場所に存在する場合があります。そのような状況では、主要なビジネスロジックを保持する単
一のセントラル・インテグレーション・システムを介してすべてをルーティングするよりも、地理的に近
くにあるシステムを統合してローカルのニーズに対応するほうが、効率的にもセキュリティ的にも有効
です。

アジャイルな組織と文化

 インフラストラクチャのライフサイクルは、ソフトウェア開発や運用のライフサイクルとは大きく異な
ります。開発のサイクルとは、1 つのプロジェクトを完了してから次のプロジェクトに取りかかることで
あり、効率とは、製品のリリースを加速し、与えられた時間に生産できる機能の数を増やすことを意味
します。メンテナンスと安定性を重視した運用の場合でも、セキュリティパッチと更新の適用や新しい
サービスのデプロイメント、あるいは変更のロールバックをより効率的かつ迅速に行うことが依然とし
て有益です。

 しかし、インフラストラクチャのアプローチはまったく異なるものです。インフラストラクチャは、特定
のソフトウェア・エンジニアリング・プロジェクトに取り組む機能横断型チームとは大きく違う、非常に
専門性の高い異なるグループが、より長い時間枠で作業する傾向があります。インフラストラクチャ・プ
ロジェクトは通常、ソフトウェアプロジェクトよりもはるかに規模が大きいため、短いリリースサイクルで
は十分に遂行できなかったり、不完全なままになってしまう可能性があります。エンタープライズ IT プ
ロフェッショナルの Andrew Froelich 氏が InformationWeek で述べたように、インフラストラクチャに
は、特にハードウェアとデータセンターの場合、それ以上進めると元に戻せなくなるポイントが存在し
ます。パブリッククラウドの場合でも同様に、そのラインを超えるとプロジェクトを破棄してやり直すこ
とができなくなるポイントがあります。10 一度構築したインフラストラクチャはずっと残ります。しかし、
インフラストラクチャのパフォーマンスにあわせて手法を調整することは可能です。

 アジャイルや DevOps のようなレスポンシブで反復的なプロセスの利点は、開発チームと運用チー
ムにとっては明らかですが、インフラストラクチャチームにとってはそれほど顕著ではありません。
Froehlich 氏はインフラストラクチャにアジャイル手法を適用することの利点と欠点を分析しましたが、
この分析は 1 つの重要な側面を見逃しています。それは、アジャイル手法を用いると、インフラストラク
チャチームは開発チームおよび運用チームと連携できるようになるということです。Rohan Pearce 氏
は CIO 誌で、インフラストラクチャチームを機能チームではなくアジャイルスタイルのワークセルに変更
することについて述べています。11 Telstra Enterprise Services のチームは、システムをチェックアウト
するプロセスや更新を行うプロセスが非常に困難で複雑だったため、開発者グループには内部システム
をただ無視させていましたが、作業グループを調整したことにより、サイクルタイムが 212 日から 42 日
に短縮されました。12

 この例は、ポイントを押さえたプロセス変更を行うことで、インフラストラクチャチームが内部グルー
プに対して、どれだけ効果的にサービスを提供できるようになるかを示しています。

 アジャイル・インテグレーション・テクノロジーは、よりアジャイルなインフラストラクチャを支えるも
のです。API、コンテナイメージ、分散インテグレーションは、ソフトウェア・インフラストラクチャについ
て語る際の新たな言語になります。

 10 Andrew Froehlich「Should IT go agile? The pros and cons」2015 年 10 月 6 日
http://www.informationweek.com/infrastructure/pc-and-servers/should-it-go-agile-the-pros-and-cons/d/
d-id/1322448

 11 Ronan Pearce「Can infrastructure be agile?」2013 年 6 月 20 日
https://www.cio.com.au/article/465436/can_infrastructure_agile_/

 12 http://agilemanifesto.org/

14jp.redhat.com E ブック アジャイル・インテグレーション：エンタープライズ・アーキテクチャのブループリント

http://www.informationweek.com/infrastructure/pc-and-servers/should-it-go-agile-the-pros-and-cons/d/d-id/1322448
http://www.informationweek.com/infrastructure/pc-and-servers/should-it-go-agile-the-pros-and-cons/d/d-id/1322448
https://www.cio.com.au/article/465436/can_infrastructure_agile_/
http://agilemanifesto.org/
http://jp.redhat.com

 アジャイル・インテグレーションは、テクノロジーを使用してインフラストラクチャチーム内の文化的
変化をサポートします。インフラストラクチャ戦略の基盤として機能し、インフラストラクチャ・テクノロ
ジーとそのチームが、開発およびビジネス戦略とより密接に連携できるようにします。

 アジャイル手法は、個人、ビルド、依存関係など、ソフトウェアプロジェクトの重要な部分を特定し、こ
れらの要素間の関係を定義できます。アジャイルプロジェクトとしてインテグレーション・インフラスト
ラクチャにアプローチする場合、チーム、コンテナイメージ、API、統合ポイントなど、アジャイルによっ
て定義されたものと並行して識別できる類似の要素と関係性があります。表 3 に、これらの類似点の
一部を示します。

図 6. Agile Manifesto によるソフトウェア開発のコア原則

Agile Manifesto は、ソフトウェア開発の中核となる 4 つの原則を定義しています。12 アジャイル・
インテグレーションをベースにしたインフラストラクチャでは、これらの原則を統合戦略に適用できます。

プロセスやツールよりもユーザーや相互作用を重視
インフラストラクチャでは、チーム間の相互作用を重視します。相互作用には、API、メッセージング、トラフィックパターン
によって管理される直接通信、システムレベルの相互依存、CI/CD パイプラインなどのテストおよびリリースプロセス
などがあります。

包括的なドキュメンテーションよりもソフトウェアが機能することを重視
インフラストラクチャは、元来、大きな変更を伴わず徐々に適応しながら、24 時間年中無休で機能するものでなければ
なりません。その意味で、機能するインフラストラクチャであることが常に暗黙の必須要件になっています。インフラスト
ラクチャ戦略として、「機能する」とは、インフラストラクチャ・コンポーネントによって、予想されるパフォーマンスの
エンベロープで、エンドユーザーが想定する動作をすることを意味します。

契約内容の交渉よりも顧客とのコラボレーションを重視
インフラストラクチャ・システムのコントラクトでは、セキュリティポリシー、サービスレベル契約、さらには公開された
API などのシステムの依存関係を、インフラストラクチャチームがどのように管理するかを規定します。顧客とは、
これらのシステムの内部ユーザーと外部ユーザーの両方を指します。アジリティを取り入れると、これらのユーザーから
システムに関連付けられたポリシーおよびインタフェースの変更につながる意見を集め、それらの変更をより迅速に
実行できるようになります。分散インテグレーションを使用すると、チームはインテグレーションの開発とデプロイメント
を直接制御できるようになり、コラボレーションが拡張します。

計画の遂行よりも変化への対応を重視
この原則では、テクノロジーがプロセスをサポートします。インフラストラクチャの場合、システムは安定した状態を維持
する必要がありますが、コンテナなどの新しいテクノロジーは弾力性のあるプラットフォームを提供します。要求に応じた
インスタンスの動的な追加と削除、デプロイメントと更新の自動化、複数のインスタンス間での変更の調整が可能です。
公開された API 定義によって、開発の一貫性を高めるために再利用可能なツールが提供されます。このアプローチ
により、変化に適応できる安定したプラットフォームが作成されます。

1

2

3

4

15jp.redhat.com E ブック アジャイル・インテグレーション：エンタープライズ・アーキテクチャのブループリント

http://jp.redhat.com

プロジェクト 組織 詳細

個人 チーム チームはそれぞれ、インフラストラクチャの特定の部分を担当し
ます。これにより、チームが管理するシステムやAPI、チームリー
ダー、チームの目標など、チームの責務に関する情報が特定され
ます。

モジュール API 明確に定義されたインタフェース (API) は、長期にわたって安定し
ており、独自のロードマップを持ち、特定のチームによって実行さ
れ、組織内で重要な特定の機能を作成します。

ビルド コンテナイメージ リリースは、テスト済みでタグが付けられた、デプロイ可能なユ
ニットをベースとしており、アクセスできる任意のチームによって
確実にデプロイすることができます。これは、モノリシックなバー
ジョン管理されたコードを置き換えます。

依存関係の

コンパイル
インテグレーション これらの分散システムにおける異なるコンポーネント間のインテ

グレーションとマッピングを識別する要素です。この統合ポイント
は、システムのあらゆる他の部分と同様に管理、作動、廃止、バー
ジョン管理、およびテストすることができます。

ビルドのテスト インフラ

ストラクチャの

自動化

ソフトウェアビルド、パフォーマンス、ユーザー要件をテストする
機能から、複数のシステムの運用および監視までの完全なライフ
サイクル管理です。

表 3. ソフトウェアアジャイルとインフラストラクチャ・アジャイルの要素の比較

16jp.redhat.com E ブック アジャイル・インテグレーション：エンタープライズ・アーキテクチャのブループリント

http://jp.redhat.com

インフラストラクチャの計画にアジャイルの原則を適用する
ほとんどの変更管理アプローチでは、すべてのサブシステムの包括的なドキュメンテー
ションが必要です。このドキュメンテーションは、監視方法からパフォーマンスパラメー
タ、担当チームまで、システムのあらゆる側面を詳細に網羅する必要があります。アジャ
イルの原則にはコラボレーションと適応性が必要であり、これはドキュメンテーション中
心の変更管理とは矛盾します。

したがって、アジャイル手法を適用する場合は潜在的なすべての利害関係者、変更、シス
テムコンポーネントを規範的に定義するのではなく、変更要求と計画の評価に使用でき
る一連のガイドラインと基準を定義します。次の質問について考えてみてください。

• どのようなエンドツーエンドのエクスペリエンスをユーザーに提供するのか。

• 関係する要素 (各チーム、API、システム) は、このエクスペリエンスの向上にどのように貢献して
いるか。また、その貢献は時間とともにどう変化していくか。

• サービスレベルを維持するために、監視とアラートをどのように、どのパラメーターに対して定
義するか。

• 予想される動作を確認するために、どのような自動テストが必要か。

• チームがユーザーエクスペリエンスを中断せずに、新バージョンのサブシステムをテストおよびデ
プロイするためのリリースパイプラインは何か。

• コンポーネントサービスで障害が発生した場合、システム全体のサービスレベルにどのように影
響するか。

アジャイル・インフラストラクチャ内の変更管理は、コントラクトではなく継続的なコラ
ボレーションである必要があります。

プロジェクト成功の可能性
IT プロジェクトが成功する可能性はどのくらいでしょうか。それを知るにはまず、成功
の判断基準を定める必要があります。それは、仕様を満たすこと、顧客の導入を増や
すこと、それともとにかくリリースにこぎつけることでしょうか。プロジェクト管理のト
レーニンググループ 4PM は、プロジェクトが予算内、期限内、仕様どおりに完了するこ
とを成功と定義しました。13 そしてその定義に照らすと、IT プロジェクトの約 70% は
失敗とみなされると算出しています。13 しかしこの数値は変化し始めています。Project
Management Institute が実施した最近の調査では、過去 5 年間と比較すると、より多
くのプロジェクトが計画目標を達成していることが明らかになりました。14 IT チームとビ
ジネスチームの連携が強化されたことにより、戦略と顧客のニーズに関するより良い情
報を得られるようになった結果だと考えられます。8

その戦略的連携の理由の 1 つが、アジャイルチームの実装です。アジャイルは、コラ
ボレーションとフィードバック、問題とシステムの全体像、創造的なアプローチを奨励
します。

 13 4PM.com「Why projects fail so often」2015 年 9 月 27 日
http://4pm.com/2015/09/27/project-failure/

 14 Sharon Florentine「IT project success rates finally improving」2017 年 2 月 27 日
https://www.cio.com/article/3174516/project-management/it-project-success-rates-finally-improving.html

17jp.redhat.com E ブック アジャイル・インテグレーション：エンタープライズ・アーキテクチャのブループリント

http://4pm.com/2015/09/27/project-failure/
https://www.cio.com/article/3174516/project-management/it-project-success-rates-finally-improving.html
http://jp.redhat.com

 技術スタックを共有すると、議論の中心は個々のコードではなくシステムとその相互依存性へと移り
ます。これはシステムレベルの考え方であり、社内開発のソフトウェア、ベンダーシステム、その間の接
続を含むソフトウェア・インフラストラクチャのコレクション全体を単一のシステムとして扱います。API

とメッセージングシステムは、インフラストラクチャ全体に広がり、ソフトウェアシステムを一元化する
ために機能します。

 API と分散インテグレーションは、個々の開発や運用チーム内で開発および理解できるため、インテ
グレーションに対するチームの責務に関する知識ははるかに明確になります。インテグレーション自体
は、システムとアプリケーションの間の相互依存関係が開発とデプロイメントを処理するチームによっ
て認識されるため、よりよく理解されます。

 インテグレーションをインフラストラクチャの基盤として使用し、そのインテグレーションに対する責
務をチーム間で分散させることにより、アジャイルアプローチがより適切なインフラストラクチャ環境
が作成されます。

まとめ：アジャイル・インテグレーションのデリバリー
 アジリティはプロセスであり、プロジェクトではありません。

 組織にとって、市場の変化に対応する能力はかつてないほど重要になっています。そして、新しいサー
ビスを立ち上げたり、既存サービスを迅速に更新したりする機能は、主に IT システムが提供することに
なります。IT インフラストラクチャはデジタルサービスの基盤であるため、その再考はかつてなく大き
な意味を持ちます。

 インフラストラクチャチームは、リスクを軽減し、安定性を維持する必要があるため、今までは最適
とは言い難い非常に長いプロセスに縛られてきました。しかし、インフラストラクチャの考え方をハード
ウェアまたはプラットフォームベースからインテグレーションベースにシフトすることは可能です。インテ
グレーションは、インフラストラクチャのサブセットではありません。ハードウェアとプラットフォームを
備えたデータとアプリケーションを含むインフラストラクチャへの概念的なアプローチです。

 Red Hat では、このアプローチをアジャイル・インテグレーションと呼んでいます。これは、インテグ
レーション・テクノロジーを使用して、よりアジャイルで適応性のあるインフラストラクチャを作成する
方法です。アジャイル・インテグレーションには、3 つのテクノロジーの柱があります。

• 分散インテグレーションは、メッセージングおよびエンタープライズ統合パターンを使用して、データ
とシステムを統合します。これらは、必要に応じてプロジェクトとタッチポイント全体に分散される小
さなチーム主導のインテグレーションに分割されます。

• 内部 API 管理は、再利用可能な一連のインタフェースを作成し、開発チームがアプリケーションやシ
ステムと連携できるようにします。API は、アプリケーションがどのように対話すべきかについてのガ
イダンスと構造を提供します。

• コンテナは、インテグレーション・プロジェクトを開発および運用プロジェクトと密接に連携させ、
DevOps 手法を使用したソフトウェアプロジェクトと同様に、インテグレーションを開発、テスト、リ
リースできるようにします。

18jp.redhat.com E ブック アジャイル・インテグレーション：エンタープライズ・アーキテクチャのブループリント

http://jp.redhat.com

 テクノロジーは、文化的変化を支える形で使用しなくてはなりません。そしてそれは、ソフトウェ
アだけでなく、インフラストラクチャチームのアジリティを高めることを意味します。インフラストラ
クチャチームがアジャイルの原則を取り入れていくに従い、これらの変更をサポートするテクノロ
ジーを徐々に導入することができます。たった 1 つのプロジェクトで組織全体を再編成してアジャイ
ルにすることなど決してできません。1 つのアジャイル・インテグレーション・テクノロジーを実装す
るか、ビジネスの 1 つの領域を変更してから、それらの変更を段階的に拡張する方が効果的です。

 変更に対する IT インフラストラクチャの応答性の向上は、長期的な戦略目標です。前進していく
のに、組織全体にわたる広範な変更を行う必要はありません。場合によっては、単独で変更を加え
てからロールアウトする必要さえありません。

 アジャイル・インテグレーションは、技術的および組織的なフレームワークの提供を通じて、IT イ
ンフラの変革を支援します。

Copyright © 2019 Red Hat, Inc. Red Hat、Red Hat Enterprise Linux、Red Hatロゴ、およびJBossは、米国およびその他の国における
Red Hat, Inc.の登録商標です。Linux®は、米国およびその他の国におけるLinus Torvalds氏の登録商標です。

fb.com/RedHatJapan
 twitter.com/RedHatJapan

linkedin.com/company/red-hat

アジア太平洋

+65 6490 4200

apac@redhat.com

オーストラリア

1 800 733 428

インド

+91 22 3987 8888

インドネシア

001 803 440 224

日本

0120 266 086

03 5798 8510

韓国

080 708 0880

マレーシア

1 800 812 678

ニュージーランド

0800 450 503

シンガポール

800 448 1430

中国

800 810 2100

香港

800 901 222

台湾

0800 666 052

RED HAT について

エンタープライズ・オープンソース・ソフトウェア・ソリューションのプロバイダーとして世界をリードす
る Red Hat は、コミュニティとの協業により高い信頼性と性能を備える Linux、ハイブリッドクラウド、コ
ンテナ、および Kubernetes テクノロジーを提供しています。Red Hat は、新規および既存 IT アプリケー
ションの統合、クラウドネイティブ・アプリケーションの開発、Red Hat が提供する業界トップレベルの
オペレーティングシステムへの標準化、複雑な環境の自動化、セキュリティ保護、運用管理を支援します。
受賞歴のあるサポート、トレーニング、コンサルティングサービスを提供する Red Hat は、Fortune 500
企業に信頼されるアドバイザーです。クラウドプロバイダー、システムインテグレーター、アプリケー
ションベンダー、お客様、オープンソース・コミュニティの戦略的パートナーとして、Red Hat はデジタル
化が進む将来に備える企業を支援します。

jp.redhat.com
f11423_0518

E ブック アジャイル・インテグレーション：エンタープライズ・アーキテクチャのブループリント

http://facebook.com/RedhatJapan/
https://twitter.com/RedHatJapan
http://linkedin.com/company/red-hat
http://jp.redhat.com

