

Kasten K10 by Veeam on Red Hat OpenShift Container Storage 4.6

Page: 1/47

Kasten K10 by Veeam on

 Red Hat OpenShift

Solution Guide
Last Updated: 1/29/2021

Kasten K10 by Veeam on Red Hat OpenShift Container Storage 4.6

Page: 2/47

Contents

1 OVERVIEW 5

1.1 KASTEN K10 ON RED HAT OPENSHIFT 5

1.2 K10 USE-CASES ON RED HAT OPENSHIFT 6

1.3 COST 7

2 ARCHITECTURE 8

3 PLANNING THE DEPLOYMENT 9

3.1 TECHNICAL REQUIREMENTS 9

3.2 RESOURCE REQUIREMENTS 9

4 DEPLOYMENT 10

4.1 K10 PREREQUISITES 10

4.2 K10 DEPLOYMENT 10

4.2.1 Step 1 - Install Helm 10

4.2.2 Step 2 - Configure Helm Repositories 10

4.2.3 Step 3 - Annotate Storage Classes 10

4.2.4 Step 4 - Verify prerequisites are satisfied 11

4.2.5 Step 5 - Verify Each Storage Class 12

4.2.6 Step 6 - Installing K10 13

5 K10 WORKFLOWS – BACKUP, RESTORE, AND DISASTER RECOVERY 16

5.1 TEST APPLICATION PREREQUISITES 16

5.2 TEST APPLICATION DEPLOYMENT 19

5.2.1 Step 1 - Deploy the application 19

5.2.2 Step 2 - Validate Application Is Running 19

5.2.3 Step 3 - Make Application Remotely Accessible 20

5.2.4 Step 4 - Verify Application Is Accessible 20

5.2.5 Step 5 - Finish Configuring WordPress 20

5.3 TEST APPLICATION BACKUP 22

5.3.1 Step 1 - Navigate Kasten Applications 22

5.3.2 Step 2 - Create Restore Point 22

5.4 TEST APPLICATION RESTORE 24

5.4.1 Step 1 - Delete a WordPress post 24

5.4.2 Step 2 - Navigate Kasten Applications 25

5.4.3 Step 3 - Restore from Restore Point 25

Kasten K10 by Veeam on Red Hat OpenShift Container Storage 4.6

Page: 3/47

5.4.4 Step 4 - Select the Restore Point 26

5.4.5 Step 5 - Select Namespace for Restore Operation 27

5.4.6 Step 6 - Confirm Restore Initiation 27

5.4.7 Step 7 - Monitor Restore Operation 28

5.4.8 Step 8 - Verify Data after Restore 28

5.4.9 Step 9 - Verify Application Component Restore 29

5.5 BACKUP POLICIES 29

5.5.1 Step 1 - Navigate Kasten Applications 29

5.5.2 Step 2 - Create Backup Policy 30

5.5.3 Step 3 - Specify Backup Policy Parameters 31

5.5.4 Step 4 - Backup Policy Summary 31

5.5.5 Step 5 - Successful Scheduled Backup 32

5.6 DISASTER RECOVERY CAPABLE BACKUP 33

5.6.1 Introduction 33

5.6.2 Step 1 - Access K10 Settings 33

5.6.3 Step 2 - Create Object Store Profile 34

5.6.4 Step 3 - Configure Object Store Profile 34

5.6.5 Step 4 - Configured Object Store Profile 35

5.6.6 Step 5 - Edit Existing Policy 35

5.6.7 Step 6 - Configure Existing Policy 36

5.6.8 Step 7 - Get Import Details 37

5.6.9 Step 8 - Copy Import Details 37

5.6.10 Step 9 - Verify Successful Export 38

5.7 DISASTER RECOVERY RESTORE 39

5.7.1 Introduction 39

5.7.2 Step 1 - Create Location Profile 39

5.7.3 Step 2 - Create Import Policy 39

5.7.4 Step 3 - Configure Import Policy 40

5.7.5 Step 4 - Wait for Import and Restore Completion 41

6 API AND CLI 43

6.1 LIST BACKUP POLICIES 43

6.2 CREATE BACKUP POLICY 43

6.3 LIST BACKUP ACTIONS 44

6.4 TRIGGER BACKUP POLICY 44

Kasten K10 by Veeam on Red Hat OpenShift Container Storage 4.6

Page: 4/47

6.5 SUPPORT 45

6.5.1 Kasten Team 45

6.5.2 Red Hat Team 45

Kasten K10 by Veeam on Red Hat OpenShift Container Storage 4.6

Page: 5/47

1 Overview

This Solution Guide provides step-by-step instructions for deploying the Kasten K10 by
Veeam® data management platform on Red Hat® OpenShift® Container Platform. It was
created by Kasten by Veeam in collaboration with the Red Hat Data Services team.

Solution Guides are reference deployments that can be used to deploy software end to end
by following best practices.

1.1 Kasten K10 on Red Hat OpenShift
The K10 data management platform provides enterprise operations teams an easy-to-use,
scalable, and secure system for backup/restore, disaster recovery, and mobility of Red Hat
OpenShift applications.

K10’s application-centric approach and deep integrations with relational and NoSQL
databases, Kubernetes distributions, Red Hat OpenShift versions, and all clouds provides
teams the freedom of infrastructure choice without sacrificing operational simplicity. Policy-
driven and extensible, K10 provides a native Kubernetes API and includes features such as
full-spectrum consistency, database integrations, automatic application discovery, multi-
cloud mobility, and a powerful web-based user interface.

Figure 1 - K10 platform on OpenShift Container Platform

Kasten K10 by Veeam on Red Hat OpenShift Container Storage 4.6

Page: 6/47

1.2 K10 use-cases on Red Hat OpenShift

Given K10’s extensive ecosystem support, you have the flexibility to choose environments
(public/ private/ hybrid cloud/ on-prem) and Red Hat OpenShift versions (cloud vendor
managed or self-managed) in support of three principal use cases: Backup and Restore,
Disaster Recovery, and Application Mobility.

Figure 2 - K10 Use cases on Red Hat OpenShift Container Platform

● Data Protection: Snapshots are the basis of persistent data capture in K10. They are
usually used in the context of disk volumes (PVC/PVs) used by the application but
can also apply to application-level data capture (e.g., by leveraging Kasten’s open and
extensible application blueprints). Given the limitations of snapshots, it is often
advisable to set up backups of your application stack. However, even if your
snapshots are durable, backups might still be useful in a variety of use cases including
lowering costs with K10’s data deduplication or backing your snapshots up in a
different infrastructure provider for cross-cloud delivery. Once applications have
been protected via a policy or a manual action, it is possible to restore them in-place
or clone them to a different namespace.

● Seamless Mobility: The ability to move an application across clusters is an
extremely powerful feature that enables a variety of use cases including Disaster
Recovery (DR), Test/Dev with realistic data sets, and performance testing in isolated
environments. In particular, the K10 platform is built to support application migration
and mobility in a variety of different and overlapping contexts:

o Cross-Namespace
o Cross-Cluster
o Cross-Platform

Kasten K10 by Veeam on Red Hat OpenShift Container Storage 4.6

Page: 7/47

● End-to-End Security: K10 platform seamlessly integrates into a customer’s
environment with their authentication tool (Red Hat OpenShift OAuth proxy, OIDC,
Centrify, LDAP, SAML, Kerberos, etc.,) and offers a variety of different ways to
secure access to its dashboard and APIs. K10 supports a flexible permissions model
which allows scoping of user permissions to perform K10 actions only within the
context of specified applications. To facilitate role-based access for users, K10
leverages Kubernetes ClusterRoles and Bindings, which are user-configurable. K10
uses enterprise-grade AES-256 algorithm and TLS/SSL protocols to encrypt all data
at-rest and in-flight.

● Deep Kubernetes integration: K10 platform can manage the entire stateful
lifecycle of an application—from optimal scheduling decisions based on the proximity
to data, to Kubernetes-driven backup, restore, and migration functionality.

● Deep OCS integration: K10 leverages the OpenShift Container Storage Interface
API available through Red Hat OpenShift Container Storage 4.6 to provide a
seamless experience when it comes to backup and restore operations. Through the
CSI snapshot and clones capabilities provided by OpenShift Container Storage,
Kasten K10 can perform backups of your data using OpenShift Container Storage
storage classes (PVCs), your metadata (Kubernetes and OpenShift APIs such as
namespaces and secrets), and provides local persistence of the backup for a minimal
restore time and the ability to restore a running application namespace while also
allowing restoring an application to a different namespace for test and QA purposes
or to a different OpenShift Container Platform cluster.

This Solution Guide deploys K10 on a Red Hat OpenShift cluster within a few minutes to
enable data protection.

1.3 Cost

The K10 platform has a Starter and Enterprise edition. The fully featured Starter edition is
free up to a limited number of nodes. For more information on license types, features
included with each type of license, and how to purchase, upgrade or transfer your license,
visit Kasten.

https://blog.kasten.io/deploying-k10-with-red-hat-openshift-oauth-proxy
https://docs.kasten.io/api/cli.html
https://www.kasten.io/product/

Kasten K10 by Veeam on Red Hat OpenShift Container Storage 4.6

Page: 8/47

2 Architecture

Below is a high-level overview of the K10 architecture that can be deployed against several
distributions and/or infrastructure types.

Figure 3 - High level overview of K10 architecture

Kasten K10 by Veeam on Red Hat OpenShift Container Storage 4.6

Page: 9/47

3 Planning the Deployment

3.1 Technical requirements

Kasten K10 requires the following prerequisites:

● Red Hat OpenShift Container Platform 4.6
● Red Hat OpenShift Container Storage 4.6
● kubectl and oc client to communicate with the clusters
● Knowledge of Kubernetes
● OpenShift or Kubernetes Command Line Interface knowledge

3.2 Resource requirements

For a deployment in an OpenShift Container Platform environment, Kasten K10 will require
the following resources. The numbers can vary based on the number of applications
protected by K10.

Pod Count = 21*
CPU (cores) = 15m
Memory = 750Mi

Note: 1m == 1millicore (1/1000 AWS CPU core)

Note: Subject to change as we continue to improve resource utilization

Kasten K10 by Veeam on Red Hat OpenShift Container Storage 4.6

Page: 10/47

4 Deployment

4.1 K10 Prerequisites

This guide provides steps to ensure a smooth and successful K10 installation in your Red Hat
OpenShift cluster while leveraging the OpenShift Container Storage snapshot and clone
features for your backup and restore strategy.

● Pre-flight checks
● Install Helm Package Manager (v2.11.0+)
● Red Hat OpenShift Container Storage 4.6 or higher

4.2 K10 Deployment

We will also publish a version of this document that includes the Operator Hub based
installation procedure in addition to the Helm based deployment enumerated below.

4.2.1 Step 1 - Install Helm

Deploying Kasten K10 requires that your OpenShift Container Platform client machine has
access to the helm command.

● On MacOS, we recommend using brew or pip to deploy the helm command.
Alternatively, you may download the Helm binary from the same URL as for Linux
client machines.

● On Linux, visit https://github.com/helm/helm/releases and download the
appropriate version.

4.2.2 Step 2 - Configure Helm Repositories

Deploying Kasten K10 requires a reconfiguration of your OpenShift Container Platform
client machine from which you will deploy the software. To successfully deploy our solution,
you must add the Kasten K10 Helm chart repository as well as client Configure and update
the helm repo to download appropriate Kasten charts.

$ helm repo add kasten https://charts.kasten.io

4.2.3 Step 3 - Annotate Storage Classes

Kasten K10 requires a special annotation on the storage classes that it needs to support as
well as a retain policy. OpenShift Container Storage snapshot storage classes are not
annotated by default and do not have a retain capability.

You can configure the correct retain policy as well as apply the correct annotation using the
following commands for both OpenShift Container Storage storage classes.

https://github.com/helm/helm/releases
https://charts.kasten.io/

Kasten K10 by Veeam on Red Hat OpenShift Container Storage 4.6

Page: 11/47

$ cat <<EOF | oc apply -f -
apiVersion: snapshot.storage.k8s.io/v1beta1
deletionPolicy: Retain
driver: openshift-storage.cephfs.csi.ceph.com
kind: VolumeSnapshotClass
metadata:
 name: ocs-storagecluster-cephfsplugin-snapclass-k10
 annotations:
 k10.kasten.io/is-snapshot-class: "true"
parameters:
 clusterID: openshift-storage
 csi.storage.k8s.io/snapshotter-secret-name: rook-csi-cephfs-provisioner
 csi.storage.k8s.io/snapshotter-secret-namespace: openshift-storage
EOF

$ cat <<EOF | oc apply -f -
apiVersion: snapshot.storage.k8s.io/v1beta1
deletionPolicy: Retain
driver: openshift-storage.rbd.csi.ceph.com
kind: VolumeSnapshotClass
metadata:
 name: ocs-storagecluster-rbdplugin-snapclass-k10
 annotations:
 k10.kasten.io/is-snapshot-class: "true"
parameters:
 clusterID: openshift-storage
 csi.storage.k8s.io/snapshotter-secret-name: rook-csi-rbd-provisioner
 csi.storage.k8s.io/snapshotter-secret-namespace: openshift-storage
EOF

4.2.4 Step 4 - Verify prerequisites are satisfied

Before proceeding with the install we recommend you use the tool created by Kasten
engineering to inspect your environment and detect any condition that could jeopardize the
deployment of K10. This tool requires the kubectl command to be available on your client
machine. The appropriate kubectl binary is available from the OpenShift client download
package.

$ curl -s https://docs.kasten.io/tools/k10_primer.sh | bash
Namespace option not provided, using default namespace
Checking for tools
 --> Found kubectl
 --> Found helm
[... truncated ...]
Validating Provisioners:

Kasten K10 by Veeam on Red Hat OpenShift Container Storage 4.6

Page: 12/47

openshift-storage.rbd.csi.ceph.com:
 Is a CSI Provisioner - OK
 Storage Classes:
 ocs-storagecluster-ceph-rbd
 Valid Storage Class - OK
 Volume Snapshot Classes:
 ocs-storagecluster-rbdplugin-snapclass
 ocs-storagecluster-rbdplugin-snapclass-k10
 Has k10.kasten.io/is-snapshot-class annotation set to true - OK
 Has deletionPolicy 'Retain' - OK

[... truncated ...]

serviceaccount "k10-primer" deleted
clusterrolebinding.rbac.authorization.k8s.io "k10-primer" deleted
job.batch "k10primer" deleted

Make sure both ocs-storagecluster-ceph-rbd and ocs-storagecluster-cephfs storage
classes are detected and show an OK status when the script has completed.

4.2.5 Step 5 - Verify Each Storage Class

Before proceeding with the install we recommend you use the tool created by the Kasten
engineering to functionally validate a storage class. The tool below will create a PVC using
the desired storage, create a snapshot and perform a rollback/restore for an in-depth
validation of the storage class.

$ curl -s https://docs.kasten.io/tools/k10_primer.sh | bash /dev/stdin \
 -s ocs-storagecluster-ceph-rbd
Namespace option not provided, using default namespace
Checking for tools
 --> Found kubectl
 --> Found helm
[... truncated ...]

Running K10Primer Job in cluster with command-
 ./k10primer storage csi-checker -s ocs-storagecluster-ceph-rbd
[... truncated ...]
Creating Snapshot
Validating snapshotter image version and the ability to create a snapshot from source
[... truncated ...]

CSI Snapshot Walkthrough:
[... truncated ...]
 Successfully tested CSI Snapshot Restore - OK

serviceaccount "k10-primer" deleted
clusterrolebinding.rbac.authorization.k8s.io "k10-primer" deleted
job.batch "k10primer" deleted

Kasten K10 by Veeam on Red Hat OpenShift Container Storage 4.6

Page: 13/47

4.2.6 Step 6 - Installing K10

You can install Kasten K10 on Red Hat OpenShift regardless of the infrastructure provider.
Note that specific infrastructure providers will require you to provide access. More details
can be found here.

1. Create a namespace

$ oc create namespace kasten-io

2. Install K10

$ helm install k10 kasten/k10 --namespace=kasten-io --set scc.create=true --set route.enabled=true --set
auth.tokenAuth.enabled=true

3. Verify the installation

$ oc get pods --namespace=kasten-io
NAME READY STATUS RESTARTS AGE
aggregatedapis-svc-cff7bff46-tfxks 1/1 Running 0 69s
auth-svc-66fdcb8c77-447gb 1/1 Running 0 69s
catalog-svc-59978f69dd-rpp79 2/2 Running 0 69s
config-svc-6b6b64dbff-q64k9 1/1 Running 0 69s
crypto-svc-766558cbc5-ct9l7 1/1 Running 0 69s
dashboardbff-svc-6b7cc6fb89-crkp5 1/1 Running 0 69s
executor-svc-55f6c4477b-frhdt 2/2 Running 0 69s
executor-svc-55f6c4477b-mwx5l 2/2 Running 0 69s
executor-svc-55f6c4477b-rg9zq 2/2 Running 0 69s
frontend-svc-dff69b7f5-ktcfh 1/1 Running 0 69s
gateway-67cdfc59cf-kds5t 1/1 Running 0 69s
jobs-svc-759bcf9fc-xdnp8 1/1 Running 0 69s
kanister-svc-9b8b757f-rljkx 1/1 Running 0 69s
logging-svc-668944bfb8-56j9r 1/1 Running 0 69s
metering-svc-cd85b7b69-dt485 1/1 Running 0 69s
prometheus-server-78b94b85fb-7mhv6 1/2 Running 0 68s
state-svc-9485d954f-5vcwf 1/1 Running 0 69s

Note: In the unlikely event scenario that pods are stuck in any other state, please follow the
support documentation to debug further.

4. Dashboard Access

$ oc get route -n kasten-io
NAME HOST/PORT [truncated]
k10-route k10-route-kasten-io.apps.ocp45.ocstraining.com / [truncated]

Point your browser to the route name followed by /k10/# (e.g., http://k10-route-kasten-
io.apps.ocp45.ocstraining.com/k10/#).

https://docs.kasten.io/install/openshift/openshift.html
https://docs.kasten.io/operating/support.html#support

Kasten K10 by Veeam on Red Hat OpenShift Container Storage 4.6

Page: 14/47

5. Dashboard Credentials

You will have to generate an access token to be able to satisfy the Kasten K10 dashboard
authentication mechanism. From your Red Hat OpenShift client machine, once logged in the
Red Hat OpenShift cluster, issue the following command:

$ oc whoami --show-token
sha256~bywYS4f9HEWxyG-A6Io9Bro3JRyd1n3xCFBnvHsULF0

Note: Copy the entire output so it can be pasted in the Kasten K10 user interface to login.

Figure 4 - Initial K10 dashboard login

When prompted, enter your company name, your email address and accept the license
agreement to gain access to the dashboard as shown below.

Kasten K10 by Veeam on Red Hat OpenShift Container Storage 4.6

Page: 15/47

Figure 5 - K10 dashboard landing page

Kasten K10 by Veeam on Red Hat OpenShift Container Storage 4.6

Page: 16/47

5 K10 Workflows – Backup, Restore, and Disaster Recovery

In this example, we will walk through how to use Kasten K10 to backup and restore a sample
WordPress application. This application namespace has one MySQL pod, to provide data
persistence, and a WordPress pod to provide an application web frontend.

The MySQL database pod is configured to use the ocs-storagecluster-ceph-rbd storage
class.

● Deploy the sample application
● Backup and restore workflow using Kasten K10
● Disaster recovery workflow using Kasten K10 to a different cluster

5.1 Test Application Prerequisites

The test application we deployed was created from this example project: Deploying
WordPress and MySQL with Persistent Volumes.

MySQL Deployment file

$ cat kustomization.yaml
secretGenerator:
- name: mysql-pass
 literals:
 - password=redhat
resources:
 - mysql-deployment.yaml
 - wordpress-deployment.yaml
(.venv) OH-iMac-JCL:wordpress-mysql-demo JCL$ cat mysql-deployment.yaml
apiVersion: v1
kind: Service
metadata:
 name: wordpress-mysql
 labels:
 app: wordpress
spec:
 ports:
 - port: 3306
 selector:
 app: wordpress
 tier: mysql
 clusterIP: None

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: mysql-pv-claim
 labels:
 app: wordpress
spec:
 accessModes:
 - ReadWriteOnce

https://kubernetes.io/docs/tutorials/stateful-application/mysql-wordpress-persistent-volume/

Kasten K10 by Veeam on Red Hat OpenShift Container Storage 4.6

Page: 17/47

 storageClassName: ocs-storagecluster-ceph-rbd
 resources:
 requests:
 storage: 20Gi

apiVersion: apps/v1 # for versions before 1.9.0 use apps/v1beta2
kind: Deployment
metadata:
 name: wordpress-mysql
 labels:
 app: wordpress
spec:
 selector:
 matchLabels:
 app: wordpress
 tier: mysql
 strategy:
 type: Recreate
 template:
 metadata:
 labels:
 app: wordpress
 tier: mysql
 spec:
 containers:
 - image: mysql:5.6
 name: mysql
 env:
 - name: MYSQL_ROOT_PASSWORD
 valueFrom:
 secretKeyRef:
 name: mysql-pass
 key: password
 ports:
 - containerPort: 3306
 name: mysql
 volumeMounts:
 - name: mysql-persistent-storage
 mountPath: /var/lib/mysql
 volumes:
 - name: mysql-persistent-storage
 persistentVolumeClaim:
 claimName: mysql-pv-claim

WordPress Deployment file

$ cat wordpress-deployment.yaml
apiVersion: v1
kind: Service
metadata:
 name: wordpress
 labels:
 app: wordpress

Kasten K10 by Veeam on Red Hat OpenShift Container Storage 4.6

Page: 18/47

spec:
 ports:
 - port: 80
 selector:
 app: wordpress
 tier: frontend
 type: LoadBalancer

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: wp-pv-claim
 labels:
 app: wordpress
spec:
 accessModes:
 - ReadWriteOnce
 storageClassName: ocs-storagecluster-ceph-rbd
 resources:
 requests:
 storage: 20Gi

apiVersion: apps/v1 # for versions before 1.9.0 use apps/v1beta2
kind: Deployment
metadata:
 name: wordpress
 labels:
 app: wordpress
spec:
 selector:
 matchLabels:
 app: wordpress
 tier: frontend
 strategy:
 type: Recreate
 template:
 metadata:
 labels:
 app: wordpress
 tier: frontend
 spec:
 containers:
 - image: wordpress:4.8-apache
 name: wordpress
 env:
 - name: WORDPRESS_DB_HOST
 value: wordpress-mysql
 - name: WORDPRESS_DB_PASSWORD
 valueFrom:
 secretKeyRef:
 name: mysql-pass
 key: password
 ports:
 - containerPort: 80

Kasten K10 by Veeam on Red Hat OpenShift Container Storage 4.6

Page: 19/47

 name: wordpress
 volumeMounts:
 - name: wordpress-persistent-storage
 mountPath: /var/www/html
 volumes:
 - name: wordpress-persistent-storage
 persistentVolumeClaim:
 claimName: wp-pv-claim

kustomization file

$ cat kustomization.yaml
secretGenerator:
- name: mysql-pass
 literals:
 - password=redhat
resources:
 - mysql-deployment.yaml
 - wordpress-deployment.yaml

5.2 Test Application Deployment

5.2.1 Step 1 - Deploy the application

Use the commands below to create a namespace called wordpress and deploy the
application.

$ cd wordpress-mysql-demo
$ oc create ns wordpress
namespace/wordpress created
$ oc project wordpress
$ oc adm policy add-cluster-role-to-user cluster-admin -z wordpress
Warning: ServiceAccount wordpress not found
clusterrole.rbac.authorization.k8s.io/cluster-admin added: " wordpress "
$ oc apply -k ./
secret/mysql-pass-ctm2f4889c created
service/wordpress-mysql created
service/wordpress created
deployment.apps/wordpress-mysql created
deployment.apps/wordpress created
persistentvolumeclaim/mysql-pv-claim created
persistentvolumeclaim/wp-pv-claim created

5.2.2 Step 2 - Validate Application Is Running

Use the commands below to verify the application is successfully deployed.

$ oc get pods
NAME READY STATUS RESTARTS AGE

Kasten K10 by Veeam on Red Hat OpenShift Container Storage 4.6

Page: 20/47

wordpress-6c5d9c567c-lrhpq 1/1 Running 0 3m
wordpress-mysql-68f759bd8f-l97b7 1/1 Running 0 3m
$ oc get pvc
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
mysql-pv-claim Bound pvc-140a892d-32de-4ce2-ae39-ab84011caf6f 20Gi RWO ocs-storagecluster-
ceph-rbd 3m
wp-pv-claim Bound pvc-7dc440a6-c94b-48bd-9ed1-90bc3d834a4e 20Gi RWO ocs-storagecluster-
ceph-rbd 3m

5.2.3 Step 3 - Make Application Remotely Accessible

Use the commands below to make the application remotely accessible.

$ oc get svc -o name
service/wordpress
service/wordpress-mysql
$ oc expose svc/wordpress
route.route.openshift.io/wordpress exposed

5.2.4 Step 4 - Verify Application Is Accessible

Point your web browser to the URL indicated by the route.

$ oc get route
NAME HOST/PORT PATH SERVICES PORT TERMINATION WILDCARD
wordpress wordpress-wordpress.apps.ocp45.ocstraining.com wordpress 80 None

5.2.5 Step 5 - Finish Configuring WordPress

Follow the on-screen instruction to complete the setup.

1. First select the language
2. Choose a name for your WordPress site
3. Configure the admin username and password
4. Login WordPress
5. Add at least two sample posts

The final application should look similar to the screen capture below.

Kasten K10 by Veeam on Red Hat OpenShift Container Storage 4.6

Page: 21/47

Figure 6 - WordPress Example

Note: K10 automatically discovers PostgreSQL and MongoDB instances. Following the
successful deployment of your database instance, click on the Applications card on the K10
dashboard to see the discovered PostgreSQL instance.

Kasten K10 by Veeam on Red Hat OpenShift Container Storage 4.6

Page: 22/47

5.3 Test Application Backup

5.3.1 Step 1 - Navigate Kasten Applications

In the Application tile click 'Unmanaged' as illustrated below.

Figure 7 - Application Tile

5.3.2 Step 2 - Create Restore Point

In this section, we will use K10’s default backup mechanism which relies on taking volume
snapshots. Click on the Applications card in the K10 dashboard as illustrated in 5.3.1, locate
your application using the filter and create a Restore Point to perform a full manual backup
as illustrated below.

Figure 8 - Create Manual Restore Point

Kasten K10 by Veeam on Red Hat OpenShift Container Storage 4.6

Page: 23/47

In the pane that opens on the right-hand side of your browser, keep the default options
selected and simply click 'Snapshot Application' as illustrated below.

Figure 9 - Confirm Manual Snapshot

Check the progress of the backup action in the main K10 dashboard.

Figure 10 - Activity Dashboard

The completion of the backup process will result in the creation of a Restore Point (a set of
configuration and data artifacts) which can be used for a restore operation.

Kasten K10 by Veeam on Red Hat OpenShift Container Storage 4.6

Page: 24/47

5.4 Test Application Restore

5.4.1 Step 1 - Delete a WordPress post

To make sure the restore is operational, make sure you delete a post from the test
WordPress application. Here are the existing posts.

Figure 11 - Existing WordPress Posts

Delete the post title 'Kasten K10 - CNCF Membership' so we can verify the successful
completion of the restore process we are about to trigger. This will prove we can perform a
restore in-place for a running application.

Figure 12 - After WordPress Post Deletion

Kasten K10 by Veeam on Red Hat OpenShift Container Storage 4.6

Page: 25/47

5.4.2 Step 2 - Navigate Kasten Applications

In the Application tile click 'Unmanaged' as illustrated below.

Figure 13 - Navigate to Applications

5.4.3 Step 3 - Restore from Restore Point

In the list of Unmanaged applications, use the filter to find the WordPress application and
select the 'Restore' function as illustrated below.

Figure 14 - Restore from Snapshot

Kasten K10 by Veeam on Red Hat OpenShift Container Storage 4.6

Page: 26/47

5.4.4 Step 4 - Select the Restore Point

We have performed a single manual backup so you will only be able to choose from a single
Restore Point at this particular point in time.

Figure 15 - Select Restore Point

Note: The type of the Restore Point is 'Manual Protect' indicating the Restore Point was
manually triggered and not the result of a scheduled backup policy.

Note: If you are selecting a Restore Point that was exported, you will see a shadow under
the actual tile to highlight the presence of multiple source (lower image). If so, an extra
dialog will appear on the screen to select the appropriate data source.

Kasten K10 by Veeam on Red Hat OpenShift Container Storage 4.6

Page: 27/47

Figure 16 - Select Data Source

5.4.5 Step 5 - Select Namespace for Restore Operation

When performing a restore you have the ability to select either the original namespace or a
new namespace. For this example, we will restore to the same namespace so we can verify
the data has been restored and the application route is left untouched.

Figure 17 - Start Restore Process

5.4.6 Step 6 - Confirm Restore Initiation

In the dialog box confirm you want to initiate the restore process.

Kasten K10 by Veeam on Red Hat OpenShift Container Storage 4.6

Page: 28/47

Figure 18 - Restore Confirmation

5.4.7 Step 7 - Monitor Restore Operation

On the main dashboard page, we can track the activity performed by K10. As illustrated
below the restore operation is now completed.

Figure 19 - Restore completed

5.4.8 Step 8 - Verify Data after Restore

To make sure the restore is successful, point your browser to your WordPress application to
verify the list of posts available is back to its original 3 entry list.

Kasten K10 by Veeam on Red Hat OpenShift Container Storage 4.6

Page: 29/47

Figure 20 - Posts after Restore

As you can see the posts are identical to the posts illustrated in 5.4.1 before the deletion of
a post.

5.4.9 Step 9 - Verify Application Component Restore

We can also go and check the age of the pods and PVCs in the project. As you can see all
resources have been redeployed after the snapshot has been rolled back.

$ oc get pods
NAME READY STATUS RESTARTS AGE
wordpress-6c5d9c567c-zbmdn 1/1 Running 0 35s
wordpress-mysql-68f759bd8f-qjjft 1/1 Running 0 35s
$ oc get pvc
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
mysql-pv-claim Bound pvc-da2d847f-54ba-4534-b6f2-91600fd0a432 20Gi RWO ocs-storagecluster-
ceph-rbd 39s
wp-pv-claim Bound pvc-3aa44772-e650-4530-9a90-dcd1d87e2a6e 20Gi RWO ocs-storagecluster-
ceph-rbd 39s

5.5 Backup policies

In the previous chapters we used a manual backup and restore process. You can also create
policies to automatically schedule backups and define the retention characteristics that will
fit your application as well as any regulation that might be observed. Policies are extremely
configurable for fine-grained.

5.5.1 Step 1 - Navigate Kasten Applications

In the Application tile click 'Unmanaged' as illustrated below.

Kasten K10 by Veeam on Red Hat OpenShift Container Storage 4.6

Page: 30/47

Figure 21 - Application Tile

5.5.2 Step 2 - Create Backup Policy

In the list of Unmanaged applications, use the filter to find the WordPress application and
then click on 'Create a Policy' as illustrated below.

Figure 22 - Initiate backup policy creation

Kasten K10 by Veeam on Red Hat OpenShift Container Storage 4.6

Page: 31/47

5.5.3 Step 3 - Specify Backup Policy Parameters

In the pane that opens on the right-hand side of your browser window choose the
characteristics desired for your scheduled backup. When done, click the 'Create Policy'
button.

Figure 23 - Customize Backup Policy Parameters

5.5.4 Step 4 - Backup Policy Summary

Once you have confirmed the creation of the backup policy, a summary of this policy will be
displayed on screen as illustrated below.

Figure 24 - Backup Policy Summary

Until the backup policy is successfully executed the application for which it was created will
show in the K10 dashboard as 'Non-Compliant' as illustrated below.

Kasten K10 by Veeam on Red Hat OpenShift Container Storage 4.6

Page: 32/47

Figure 25 – Non-Compliant Applications

5.5.5 Step 5 - Successful Scheduled Backup

Upon successful scheduling and completion of the backup for the application. the
compliance of the application with its backup policy will be reported and displayed in the
application card. In the screenshot below, we can see that our WordPress application is now
compliant with its policy as illustrated below.

Figure 26 - Application Backup Policy Compliance

Kasten K10 by Veeam on Red Hat OpenShift Container Storage 4.6

Page: 33/47

5.6 Disaster Recovery Capable Backup

5.6.1 Introduction

We can use an existing Restore Point to enable Disaster Recovery capabilities through the
export of backup data and metadata using a S3 object store. Kasten K10 does support Red
Hat OpenShift Container Storage, Red Hat Ceph® Storage, Google Cloud Storage, Amazon
S3, Azure Storage and any S3 compatible endpoint.

The process involves the following steps:

● Backup the data via snapshot and the metadata
● Export the data and the metadata to an object store
● Create an import profile on the destination cluster
● Restore the data and the metadata in the destination cluster
● Start the application in the destination cluster

Note: The S3 endpoint must be available from the source cluster to perform the backup and
the export functions as well as from the remote cluster at the time of the restore in case the
source cluster has failed.

Note: We can leverage policies to automate this workflow at a user-defined schedule and
retention.

5.6.2 Step 1 - Access K10 Settings

In the top right-hand corner of your browser window click on 'Settings' as illustrated below.

Figure 27 - Access K10 Settings

Kasten K10 by Veeam on Red Hat OpenShift Container Storage 4.6

Page: 34/47

5.6.3 Step 2 - Create Object Store Profile

In the new browser page that displays, click on 'New Profile' as illustrated below.

Figure 28 - Create New S3 Profile

5.6.4 Step 3 - Configure Object Store Profile

In the new browser page that displays, name your object store profile and enter the
appropriate information to grant access to the object store. For our example, we will use a
S3 compatible object store provided by an OpenShift Container Storage RADOS Gateway.

The parameters include:

● Access key
● Secret key
● Endpoint URL
● SSL override
● Bucket name

Figure 29 - Name Object Store Profile

Note: The access key, secret key and bucket must be created in the Red Hat Ceph Storage
or OpenShift Container Storage cluster.

Kasten K10 by Veeam on Red Hat OpenShift Container Storage 4.6

Page: 35/47

5.6.5 Step 4 - Configured Object Store Profile

If the set of parameters is correct and K10 is able to connect to the object store the profile
will appear on the Location Profile page as illustrated below.

Figure 30 - Successful Object Store Creation

5.6.6 Step 5 - Edit Existing Policy

Go back to the Dashboard, click on the Policies card, click on the policy created earlier, and
click the 'Edit' icon as illustrated below.

Figure 31 - Edit Backup Policy

Kasten K10 by Veeam on Red Hat OpenShift Container Storage 4.6

Page: 36/47

5.6.7 Step 6 - Configure Existing Policy

Change the following parameters for the backup policy:

● Toggle the 'Enable Backups via Snapshot Exports'
● Choose which backup you want exported (e.g., Every snapshot, Daily snapshot)
● Choose the 'Export Location Profile' for your external object store
● Select the proper retention for your exports

When done click 'Edit Policy' at the bottom of the pane to confirm changes.

Figure 32 - Export Specific Parameters

Kasten K10 by Veeam on Red Hat OpenShift Container Storage 4.6

Page: 37/47

5.6.8 Step 7 - Get Import Details

In the policy page click on `Show import details` as illustrated below.

Figure 33 - Import Details

5.6.9 Step 8 - Copy Import Details

Copy the character string. It is used as a handshake on the destination cluster to import from
the appropriate backup.

Figure 34 - Copy Import Details

Kasten K10 by Veeam on Red Hat OpenShift Container Storage 4.6

Page: 38/47

5.6.10 Step 9 - Verify Successful Export

Go back to the Dashboard and you should see an Export job with a successful upload to the
S3 endpoint.

Figure 35 - Export Successful

Kasten K10 by Veeam on Red Hat OpenShift Container Storage 4.6

Page: 39/47

5.7 Disaster Recovery Restore

5.7.1 Introduction

This section will cover how an application can be recovered using the data and metadata
store in a Kasten K10 compatible external object store.

The target cluster must have access to the external object store configured on the source
cluster.

5.7.2 Step 1 - Create Location Profile

In the destination cluster, follow steps described in 5.6.2 through 5.6.5 to configure the
external object store profile.

5.7.3 Step 2 - Create Import Policy

In the destination cluster, locate the 'Policies' tile from the main K10 dashboard and select
'new policy' as illustrated below.

Figure 36 - Create Import Policy

Kasten K10 by Veeam on Red Hat OpenShift Container Storage 4.6

Page: 40/47

5.7.4 Step 3 - Configure Import Policy

In the policy dialog, provide the following information as illustrated below:

● Policy name
● Select 'Import'
● Check the 'Restore After Import' box
● Select the frequency for the restore
● Paste the import character string from 5.6.9
● Select the external object store you want to pull the data from
● Click 'Create Policy' to validate

Figure 37 - Import Policy Parameters

Kasten K10 by Veeam on Red Hat OpenShift Container Storage 4.6

Page: 41/47

5.7.5 Step 4 - Wait for Import and Restore Completion

Once you go back to the dashboard, you will see an Import job followed by a Restore job to
simulate a successful disaster recovery. Simply monitor the completion of the import until
the import and the restore complete successfully. as illustrated below.

Figure 38 - Import and Restore Complete

In this test scenario, we restored to a live cluster with a different cluster name and base
domain. This required delete the existing route that was restored with the same base domain
and to expose the WordPress service again using the target cluster base domain to visualize
the application user interface as illustrated below.

Figure 39 - Restore WordPress Application UI

Kasten K10 by Veeam on Red Hat OpenShift Container Storage 4.6

Page: 42/47

Note: Pay attention to the browser URL we used to reach out to the test DR cluster (original
base domain was ocp45.ocstraining.com while the disaster recovery base domain is
perf4.chris.ocs.ninja.

Kasten K10 by Veeam on Red Hat OpenShift Container Storage 4.6

Page: 43/47

6 API and CLI

Kasten K10 is fully compatible with the Kubernetes, OpenShift Container Platform and
OpenShift Container Storage CSI APIs. This allows for a full automation of tasks via
configuration file in YAML format.

6.1 List Backup Policies

$ oc get policies.config.kio.kasten.io -n kasten-io
NAME STATUS
wordpress-backup Success

6.2 Create Backup Policy

$ cat k10-wordpress-cli-policy.yaml
apiVersion: config.kio.kasten.io/v1alpha1
kind: Policy
metadata:
 name: wordpress-cli-backup
 namespace: kasten-io
spec:
 comment: "This is a backup policy craeted via a yaml resource file"
 frequency: "@daily"
 actions:
 - action: backup
 backupParameters:
 profile:
 namespace: kasten-io
 name: externals3
 - action: export
 exportParameters:
 frequency: "@daily"
 profile:
 name: externals3
 namespace: kasten-io
 exportData:
 enabled: true
 retention:
 daily: 0
 weekly: 0
 monthly: 0
 yearly: 0
 retention:
 daily: 7
 weekly: 4
 monthly: 12
 yearly: 7
 selector:
 matchExpressions:
 - key: k10.kasten.io/appNamespace
 operator: In
 values:

Kasten K10 by Veeam on Red Hat OpenShift Container Storage 4.6

Page: 44/47

 - wordpress
$ cat k10-wordpress-cli-policy.yaml | oc create -f -
policy.config.kio.kasten.io/wordpress-cli-backup created
$ oc get policies.config.kio.kasten.io -n kasten-io
NAME STATUS
wordpress-backup Success
wordpress-cli-backup Success

6.3 List Backup Actions

$ oc get backupactions.actions.kio.kasten.io -n wordpress
NAME CREATED AT
scheduled-qbr24 2020-11-20T23:57:04Z
scheduled-pdph4 2020-11-20T21:57:02Z
manualbackup-7jvlt 2020-11-20T19:57:48Z
scheduled-7pncf 2020-11-20T22:57:03Z

6.4 Trigger Backup Policy

$ cat k10-wordpress-cli-policy-trigger.yaml
apiVersion: actions.kio.kasten.io/v1alpha1
kind: BackupAction
metadata:
 name: backup-wordpress
 namespace: wordpress
 labels:
 # These labels are required for on-demand actions so that
 # actions can be filtered.
 # Label presence is validated.
 k10.kasten.io/appName: "wordpress"
 k10.kasten.io/appNamespace: "wordpress"
 k10.kasten.io/policyName: "wordpress-cli-backup"
 k10.kasten.io/policyNamespace: "kasten-io"
spec:
 subject:
 # Reference to the K10App CR for the application
 name: wordpress
 namespace: wordpress
$ cat k10-wordpress-cli-policy-trigger.yaml | oc create -f -
backupaction.actions.kio.kasten.io/backup-wordpress created
$ oc get backupactions.actions.kio.kasten.io -n wordpress
NAME CREATED AT
scheduled-qbr24 2020-11-20T23:57:04Z
scheduled-pdph4 2020-11-20T21:57:02Z
scheduled-4w4dq 2020-11-21T00:57:04Z
manualbackup-7jvlt 2020-11-20T19:57:48Z
scheduled-7pncf 2020-11-20T22:57:03Z
backup-wordpress 2020-11-21T01:00:18Z <-- Triggered by previous command

For additional resource file configuration please visit the official Kasten K10 documentation.

https://docs.kasten.io/latest/api/cli.html

Kasten K10 by Veeam on Red Hat OpenShift Container Storage 4.6

Page: 45/47

Appendix

6.5 Support

Any Red Hat OpenShift version that provides Kubernetes v1.15 or higher is supported by the
current K10 release. Please refer to this docs page for information.

6.5.1 Kasten Team

If you have questions, need support, or would like an invite to our support Slack channel,
please email our support team (support@kasten.io) or visit our contact page.

6.5.2 Red Hat Team

If you have questions, need support feel free to visit our contact page and select your
favorite method of contact as well as the type of contact you would need (talk to a Red
Hatter, phone contact or support.

https://docs.kasten.io/latest/operating/support.html
mailto:support@kasten.io
https://www.kasten.io/contactus/
https://www.redhat.com/en/contact

Kasten K10 by Veeam on Red Hat OpenShift Container Storage 4.6

Page: 46/47

Illustrations
Figure 1 - K10 platform on OpenShift Container Platform 4

Figure 2 - K10 Use cases on OpenShift Container Platform 5

Figure 3 - High level overview of K10 architecture 7

Figure 4 - Initial K10 dashboard login 12

Figure 5 - K10 dashboard landing page 13

Figure 6 - WordPress Example 18

Figure 7 - Application Tile 19

Figure 8 - Create Manual Restore Point 19

Figure 9 - Confirm Manual Snapshot 20

Figure 10 - Activity Dashboard 20

Figure 11 - Existing WordPress Posts 21

Figure 12 - After WordPress Post Deletion 21

Figure 13 - Navigate to Applications 22

Figure 14 - Restore from Snapshot 22

Figure 15 - Select Restore Point 23

Figure 16 - Select Data Source 23

Figure 17 - Start Restore Process 24

Figure 18 - Restore Confirmation 24

Figure 19 - Restore completed 25

Figure 20 - Posts after Restore 25

Figure 21 - Application Tile 26

Figure 22 - Initiate backup policy creation 27

Figure 23 - Customize Backup Policy Parameters 27

Figure 24 - Backup Policy Summary 28

Figure 25 - Non-Compliant Applications 28

Figure 26 - Application Backup Policy Compliance 29

Figure 27 - Access K10 Settings 30

Figure 28 - Create New S3 Profile 31

Kasten K10 by Veeam on Red Hat OpenShift Container Storage 4.6

Page: 47/47

Figure 29 - Name Object Store Profile 31

Figure 30 - Successful Object Store Creation 32

Figure 31 - Edit Backup Policy 32

Figure 32 - Export Specific Parameters 33

Figure 33 - Import Details 34

Figure 34 - Copy Import Details 34

Figure 35 - Export Successful 35

Figure 36 - Create Import Policy 36

Figure 37 - Import Policy Parameters 37

Figure 38 - Import and Restore Complete 38

Figure 39 - Restore WordPress Application UI 38

	1 Overview
	1.1 Kasten K10 on Red Hat OpenShift
	1.2 K10 use-cases on Red Hat OpenShift
	1.3 Cost

	2 Architecture
	3 Planning the Deployment
	3.1 Technical requirements
	3.2 Resource requirements

	4 Deployment
	4.1 K10 Prerequisites
	4.2 K10 Deployment
	4.2.1 Step 1 - Install Helm
	4.2.2 Step 2 - Configure Helm Repositories
	4.2.3 Step 3 - Annotate Storage Classes
	4.2.4 Step 4 - Verify prerequisites are satisfied
	4.2.5 Step 5 - Verify Each Storage Class
	4.2.6 Step 6 - Installing K10

	5 K10 Workflows – Backup, Restore, and Disaster Recovery
	5.1 Test Application Prerequisites
	5.2 Test Application Deployment
	5.2.1 Step 1 - Deploy the application
	5.2.2 Step 2 - Validate Application Is Running
	5.2.3 Step 3 - Make Application Remotely Accessible
	5.2.4 Step 4 - Verify Application Is Accessible
	5.2.5 Step 5 - Finish Configuring WordPress

	5.3 Test Application Backup
	5.3.1 Step 1 - Navigate Kasten Applications
	5.3.2 Step 2 - Create Restore Point

	5.4 Test Application Restore
	5.4.1 Step 1 - Delete a WordPress post
	5.4.2 Step 2 - Navigate Kasten Applications
	5.4.3 Step 3 - Restore from Restore Point
	5.4.4 Step 4 - Select the Restore Point
	5.4.5 Step 5 - Select Namespace for Restore Operation
	5.4.6 Step 6 - Confirm Restore Initiation
	5.4.7 Step 7 - Monitor Restore Operation
	5.4.8 Step 8 - Verify Data after Restore
	5.4.9 Step 9 - Verify Application Component Restore

	5.5 Backup policies
	5.5.1 Step 1 - Navigate Kasten Applications
	5.5.2 Step 2 - Create Backup Policy
	5.5.3 Step 3 - Specify Backup Policy Parameters
	5.5.4 Step 4 - Backup Policy Summary
	5.5.5 Step 5 - Successful Scheduled Backup

	5.6 Disaster Recovery Capable Backup
	5.6.1 Introduction
	5.6.2 Step 1 - Access K10 Settings
	5.6.3 Step 2 - Create Object Store Profile
	5.6.4 Step 3 - Configure Object Store Profile
	5.6.5 Step 4 - Configured Object Store Profile
	5.6.6 Step 5 - Edit Existing Policy
	5.6.7 Step 6 - Configure Existing Policy
	5.6.8 Step 7 - Get Import Details
	5.6.9 Step 8 - Copy Import Details
	5.6.10 Step 9 - Verify Successful Export

	5.7 Disaster Recovery Restore
	5.7.1 Introduction
	5.7.2 Step 1 - Create Location Profile
	5.7.3 Step 2 - Create Import Policy
	5.7.4 Step 3 - Configure Import Policy
	5.7.5 Step 4 - Wait for Import and Restore Completion

	6 API and CLI
	6.1 List Backup Policies
	6.2 Create Backup Policy
	6.3 List Backup Actions
	6.4 Trigger Backup Policy
	6.5 Support
	6.5.1 Kasten Team
	6.5.2 Red Hat Team

	Word Bookmarks
	bookmark=id.lnxbz9
	bookmark=id.2xcytpi
	bookmark=id.4i7ojhp

