
Running Resilient Databa ses on

Red H at
OpenShif t
Benefits, Trade Offs, and Solutions for Deployment

white paper

https://www.redhat.com/en
https://www.yugabyte.com/

Table of Contents

Introduction .

Five Benefits to Running a Database in Kubernetes .

1. Better Resource Utilization. .

2. Elastic Scaling of Pod Resources Dynamically. .

3. Consistency and Portability Between Clouds, On-Premises,
 and Edge .

4. Out-of-the-Box Infrastructure Orchestration. .

5. Automated Day 2 Operations .

Five Trade Offs to Running a Database in Kubernetes .

1. Possibility of Pod Crashes. .

2. Local vs. External Persistent Storage. .

3. Potential Need for a Load Balancer. .

4. Possible Networking Complexities. .

5. Operational “Gotchas” .

Mitigating Trade Offs with Distributed SQL Databases .

What is a Distributed SQL Database?. .

Why Distributed SQL Databases?. .

Distributed SQL Database Architecture. .

How a Distributed SQL Database Mitigates Kubernetes
Tradeoffs .

YugabyteDB: Best-in-Class Distributed SQL for Resilient
Kubernetes Workloads .

Deployment Flexibility .

High Performance .

Operational Simplicity .

PostgreSQL Compatibility .

Security .

YugabyteDB and Red Hat OpenShift: Cloud Native Resiliency
at Enterprise Scale. .

“Run Anywhere” Distributed Stateful Workloads .

Zero Data Loss and Continuous Availability. .

Getting Started with YugabyteDB on Red Hat OpenShift.

Conclusion. .

3

3

3

4

4

4

5

5

5

6

6

7

7

8

8

8

9

10

10

10

10

11

11

11

11

12

13

14

15

| 3© 2022 Yugabyte. All rights reserved yugabyte + redhat openshift

Introduction
Kubernetes, a popular open-source platform for managing containerized workloads and
services, has become widely adopted in the Fortune 500. Many companies, such
as Walmart, Target, and eBay, are now using the platform to run stateless and stateful
applications on-premises or as hybrid cloud deployments in production. Of course, with
any new technology, there are growing pains when running workloads on Kubernetes.
But most executives and developers agree that the benefits far outweigh the challenges.

On the flip side, data on the Kubernetes ecosystem is evolving rapidly with the rise of
stateful applications. However, stateful applications demand a new database architecture
that takes into account the scale, latency, availability, and security needs of applications.
But how do you know which database architecture is best equipped to handle these
challenges?

In this white paper, we’ll explore the benefits and potential trade offs of running a data-
base in Kubernetes. We’ll then discuss how to mitigate tradeoffs with distributed SQL, a
new class of database that combines the best features of traditional RDBMSs and NoSQL
databases for running transactional applications. Finally, we’ll provide a real-world solu-
tion for ensuring Kubernetes deployments are resilient and continuously available.

Five Benefits to Running a Database in Kubernetes
Should you run a database in Kubernetes? There are no definitive answers. However,
there are tangible benefits to consider. Let’s examine the reasons why it’s worth it for
your company.

Better Resource Utilization
In a modern application, many companies are moving to adopt microservices archi-
tectures. As a result, this shift tends to propagate a lot of smaller databases. And com-
panies often have a finite set of nodes on which to place those databases. So, when
companies decide to manage these databases, they’re left with a sub-optimal allo-
cation of databases onto nodes. However, running Kubernetes allows the underlying
system to determine the best places to put the databases while optimizing resource
placement on those nodes.

1.1.

Kubernetes is best utilized
when running a large number
of databases in a multi-tenant
environment. In this deployment
scenario, not only do companies
save on costs, they need fewer
nodes to run the same sort of
databases. These databases also
have different footprints, CPU
resources, memory, and disk
requirements.

https://www.youtube.com/watch?v=sfPFrvDvdlk
https://tech.target.com/blog/running-cassandra-in-kubernetes-across-1800-stores
https://www.ebayinc.com/stories/news/ebay-builds-own-servers-intends-to-open-source/
https://www.redhat.com/rhdc/managed-files/cl-state-workloads-containers-kubernetes-analyst-paper-f29224-202107-en_0.pdf
https://www.redhat.com/en/resources/kubernetes-adoption-security-market-trends-2021-overview
https://www.redhat.com/en/topics/cloud-native-apps/stateful-vs-stateless
https://blog.yugabyte.com/what-is-distributed-sql/
https://www.ibm.com/cloud/learn/relational-databases
https://www.ibm.com/cloud/learn/nosql-databases
https://www.ibm.com/cloud/learn/nosql-databases
https://developers.redhat.com/articles/2022/01/11/5-design-principles-microservices
https://developers.redhat.com/articles/2022/01/11/5-design-principles-microservices
https://www.redhat.com/en/topics/cloud-computing/what-is-multitenancy
https://www.redhat.com/en/topics/cloud-computing/what-is-multitenancy

| 4© 2022 Yugabyte. All rights reserved yugabyte + redhat openshift

2.2.

3.3.

4.4.

Elastic Scaling of Pod Resources Dynamically
The Kubernetes orchestration platform has the ability
to resize pod resources dynamically. More specifically,
memory, cpu, and disk can be modified to scale a data-
base to meet demanding workloads. Kubernetes makes
it easy to scale up automatically without incurring any
downtime through its horizontal pod autoscaler (HPA)
and vertical pod autoscaler (VPA) operators. However,
for VPA, it’s worth noting a database would need to have
more than one instance to avoid downtime.

Consistency and Portability Between Clouds, On-Premises, and Edge
Companies want to be consistent with the way they build, deploy, and manage work-
loads at different locations. They also want the capability to be able to move workloads
from one cloud to another, if needed. However, most organizations have a large amount
of legacy code they still run on-premises and they’re looking to move these installations
up into the cloud.

Kubernetes allows you to deploy your
infrastructure as code, in a consistent
way, everywhere. This allows you to
write a bit of code that describes the
resource requirements deployed to the
Kubernetes engine and the platform
will take care of that. You now have the
same sort of control in the cloud that
you would have on bare metal servers
in your data center, or edge.

Out-of-the-Box Infrastructure Orchestration
With Kubernetes, if a pod crashes, then it automatically restarts. Typically, pods can
be started anywhere, as the platform has the capability to say, “I want to move this
workload from this pod to this node onto another node.” This allows it to do optimal
resource allocation and utilization, but it’s really good for stateless workloads.

A microservice can be deployed in a Kubernetes pod with 10 different instances of that
pod serving traffic. The platform doesn’t care if one goes down and moves to a different
node since it has no state. However, for a database, this becomes a bigger challenge
when dealing with stateful workloads. This means you need to set up specific policies in
Kubernetes to ensure it addresses this challenge.

For example, you may want to set up anti-affinity that allows you to specify in code the
rules Kubernetes should follow. These include not wanting two instances of the same
database on the same node. This allows your system to suffer a hardware failure with-
out taking down multiple copies of database instances. You don’t want to lose multiple
copies of the same piece of data.

https://www.redhat.com/en/topics/automation/what-is-infrastructure-as-code-iac
https://blog.yugabyte.com/understanding-how-yugabyte-db-runs-on-kubernetes/

| 5© 2022 Yugabyte. All rights reserved yugabyte + redhat openshift

Automated Day 2 Operations
Kubernetes allows periodic backups and database software upgrades. You want these
operations automated so they can stay up-to-date. Even better, doing these updates
across a database cluster is easy. Therefore, if a security vulnerability is exposed, and
you want to patch it across the cluster, Kubernetes makes this very simple.

However, when using a traditional RDBMS with Kubernetes, you’re going to have a
couple copies of the data. As a result, if you lose a pod, there’s another copy elsewhere.
But you’re still responsible for migrating the data between those two pods and resync-
ing it for the failed instance when it comes back online. This is done asynchronously in
Kubernetes, which is why having automated Day 2 operations can be complicated for a
traditional RDBMS.

For example, if you’re migrating data manually, you would check to see that the cluster
isn’t under heavy load. You’ll need to wait until the load mitigates before moving the
data to another node. But if you’re migrating data in an automated fashion, then you
need to be careful to have those checks built in. Otherwise, if you take down a primary
copy of data under heavy load, your replica may think it has the data when it really
doesn’t. This means there could be two different copies of the data. It also creates the
potential for data loss and inconsistencies.

5.5.

Five Trade Offs to Running a Database in Kubernetes
We’ve covered why you should run a database in Kubernetes. However, when making any
new technology decisions, there are some potential trade offs to keep in mind.

Possibility of Pod Crashes
Kubernetes is a wonderful orchestration tool. However, a Kubernetes pod may crash be-
cause it has process affinity. Therefore, if the process that starts a pod goes down, then
the entire pod could go away. So, if you run a particular query, and that query overloads
memory or a bad configuration, Kubernetes may take down the pods. This can lead to
the entire pod crashing.

Common reasons pods may crash are memory pressure and the OOM killer. Another
factor is transparent rescheduling of pods. You can add a node, but you need to move
those pods around to ensure optimal resource contention. But you may experience
different issues when using different sorts of storage. Locally attached storage on da-
tabases provides fast performance. The only problem, though, is that locally attached
storage doesn’t exist on the new node.

As an example, let’s see what happens when you try to move a pod from node 1 to node
3, as illustrated in the below diagram.

1.1.

https://en.wikipedia.org/wiki/Out_of_memory

| 6© 2022 Yugabyte. All rights reserved yugabyte + redhat openshift

If there is locally attached storage
on node 1, when that pod moves
to node 3, that locally attached
storage isn’t available. It looks like
it’s there but it’s typically blank,
which means there may be data
loss. You can get around this issue
by using a network-attached storage
or external persistent storage and
then attach the new pod.

Local vs. External Persistent Storage
Locally attached disks are great. They are a single drive or set of drives that offer the
fastest performance (e.g., NVME drives). For example, if latency is critical, locally at-
tached storage is great. But as mentioned in the last section, if we move a pod around,
the storage doesn’t go with it. This means you start with a blank drive.

External persistent storage provides some form of network-attached storage and are
easy to consume via Container Storage Interface(CSI) plugins. This is easy to set up with
cloud providers, but not so easy on bare metal servers. The advantages of external
persistent storage is it’s a logical view of drives. As a result, instead of having a fixed
drive, there’s an arbitrary large view where a drive’s storage capacity can be specified.

2.2.

3.3.

Another advantage is in moving a pod
from one node to another. Pods can
simply re-attach to the same storage—
which is a virtual drive—and to that
instance.

Various software solutions can handle
on-premises deployments with ease. It
all comes down to speed vs. the ease
of restarting a new node.

Potential Need for a Load Balancer
There’s a possibility for networking restrictions in Kubernetes clusters. This means an
application may need to be on the same cluster as the actual database. If not, then a
load balancer is required.

A load balancer allows the exposure of services to external customers, be they in the
cloud or bare metal servers. This isn’t a major issue in public clouds or popular con-
tainer platforms. This is because they have built-in network load balancers and few
limitations outside of how many public IP addresses are acquired.

https://kubernetes.io/blog/2019/01/15/container-storage-interface-ga/
https://www.ibm.com/cloud/learn/load-balancing

| 7© 2022 Yugabyte. All rights reserved yugabyte + redhat openshift

4.4.

5.5.

One potential solution is to host all
database instances in the same cluster.
However, this can be an anti-pattern.
It’s better to use smaller clusters—
and more of them—to minimize the
risk of localized failure. Or, to put it
another way, if a node or set of nodes
crash, what is the cost to an application
across the distributed ecosystem
you’re building?

Possible Networking Complexities
Let’s say there’s a cluster set up for geographical replication, with a cluster in the US-
East region, and another in the US-West region. You want to replicate the data between
them so there is geographical redundancy if a natural disaster occurs and an entire clus-
ter crashes. You then have another full copy of the data you can automatically connect
to and just keep running.

Typically, these regional clusters reside in different data centers. And databases like to
replicate over TCP at a very low level to provide efficient replication. However, some
cloud providers, such as Google Cloud, can set up VPC pairing between the East and
West regions to address these concerns. But not all cloud providers offer this, and if
you’re running on bare metal servers, you have to work out other solutions.

One such solution is DNS chaining. This can be complex to do based on your environ-
ment, but it involves a set of technologies rather than a single technology. Another solu-
tion is to use a service mesh, such as Istio. A service mesh works well but could cause
performance degradation since it runs over HTTP rather than TCP. The open source tool
Submariner, built to connect overlay networks of different Kubernetes clusters using
encrypted VPN tunnels, can solve this challenge.

Operational “Gotchas”
If you’re going to run a database on Kubernetes in production, there are several “got-
chas” to watch out for:

Define anti-affinity and what constitutes a pod disruption
Understand the concept of side cars
Build in observability with a tool such as Prometheus
Create troubleshooting cookbooks (e.g., what happens in crash backups due to
memory pressures over subscriptions?)
Define private image registries and pool secrets (e.g., who can upload, who can
download, what permissions are in place)

Many companies successfully run Kubernetes in production. But most organizations
get started by running the platform in lower production environments such as dev, test,
and staging. There’s also a growing selection of companies who run distributed SQL
databases on Kubernetes in production. We’ll explore the ins and outs of this type of
database in the next section.

https://docs.yugabyte.com/latest/deploy/kubernetes/multi-cluster/
https://www.redhat.com/en/topics/microservices/what-is-a-service-mesh
https://cloud.redhat.com/blog/istio-multicluster-on-openshift#:~:text=Istio%20Multicluster%20is%20a%20feature%20of%20Istio--the%20basis,across%20multiple%20clusters%20with%20a%20single%20control%20plane
https://cloud.redhat.com/blog/connecting-managed-clusters-with-submariner-in-red-hat-advanced-cluster-management-for-kubernetes
https://www.techtarget.com/searchapparchitecture/tip/The-reasons-to-use-or-not-use-sidecars-in-Kubernetes
https://www.ibm.com/cloud/learn/observability
https://cloud.redhat.com/learn/topics/prometheus
https://www.yugabyte.com/success-stories/

| 8© 2022 Yugabyte. All rights reserved yugabyte + redhat openshift

Up to now, we’ve discussed the many benefits and potential trade offs to running a database
in Kubernetes. What’s needed is a distributed SQL database that can mitigate trade offs
while ensuring data is always available. In this section, we’ll define what a distributed SQL
database is, and show how it can mitigate trade offs when running in Kubernetes.

What is a Distributed SQL Database?
A distributed SQL database is a single logical relational database deployed on a cluster of
servers. The database automatically replicates and distributes data across multiple servers.
These databases are strongly consistent and support consistency across availability and
geographic zones in the cloud.

At a minimum, a distributed SQL database has the following characteristics:

A SQL API for accessing and manipulating data and objects
Automatic distribution of data across nodes in a cluster
Automatic replication of data in a strongly consistent manner
Support for distributed query execution so clients do not need to know about
the underlying distribution of data
Support for distributed ACID transactions

Why Distributed SQL Databases?
Business innovation is putting pressure on traditional systems of record. This is forcing com-
panies to deliver high-value applications and services more quickly while lowering IT costs
and reducing risk through compliance.

But these applications—in the form of microservices, born-in-the-cloud applications, and
edge and IoT workloads—require a new class of database that is:

Resilient to failures and continuously available: Critical services remain avail-
able during node, zone, region, and data center failures as well as system mainte-
nance with fast failover
Horizontally scalable: Operations teams can effortlessly scale out even under
heavy load without downtime by simply adding nodes to a cluster, and scale back
in when the load reduces
Geographically distributed: Operators can make use of synchronous and asyn-
chronous data replication and geo-partitioning to deploy databases in geo-dis-
tributed configurations
SQL and RDBMS feature compatible: Developers no longer need to choose be-
tween the horizontal scalability of cloud native systems and the ACID guarantees
and strong consistency of traditional RDBMSs
Hybrid and multi-cloud ready: Organizations can deploy and run data infra-
structure anywhere—and avoid being locked-in to any specific cloud provider.

Mitigating Trade Offs with Distributed SQL Databases

| 9© 2022 Yugabyte. All rights reserved yugabyte + redhat openshift

Distributed SQL Database Architecture
A distributed SQL database provides the best of a traditional RDBMS with cloud native data-
base capabilities. It has a two-layer architecture as part of a single logical SQL database:

SQL Query Layer

A distributed SQL database has a SQL API for applications to model relational data and also
perform queries involving those relations. Queries are automatically distributed across mul-
tiple nodes of the database cluster.

Distributed Data Storage Layer

Data, including indexes, in a distributed SQL database are automatically distributed—or
sharded—across multiple nodes of the cluster so that no single node becomes a bottleneck to
high performance and availability.

Supporting a powerful SQL API layer requires the underlying storage layer to be built on
strongly consistent replication across all nodes of the cluster. This means writes to the
database are synchronously committed at multiple nodes in order to guarantee availability
during failures.

And finally, the database storage layer supports distributed ACID transactions where transac-
tion coordination is required across multiple rows located on multiple nodes.

https://docs.yugabyte.com/latest/architecture/docdb-sharding/sharding/#root
https://docs.yugabyte.com/latest/architecture/docdb-replication/replication/#follower-reads
https://docs.yugabyte.com/latest/architecture/transactions/distributed-txns/#root

| 10© 2022 Yugabyte. All rights reserved yugabyte + redhat openshift

How a Distributed SQL Database Mitigates Kubernetes Tradeoffs
A distributed SQL database functions as a single logical database deployed as a cluster of
nodes. This means the database cluster takes care of sharding, replication, load balancing,
and data distribution. Therefore, a distributed SQL database keeps your database up and
running even if there’s a pod, node, or underlying infrastructure failure. The database cluster
is able to detect the failure, handle it, and recover without any loss of data or access by the
application.

A distributed SQL database also provides a scalable and resilient data store for connecting
applications. It takes care of migrating data between pods after a pod moves to a new node.
It does this behind the scenes without any form of operator intervention.

YugabyteDB: Best-in-Class Distributed SQL for Resilient
Kubernetes Workloads

YugabyteDB is a cloud native distributed SQL database for transactional applications. The
database is 100% open source and built to solve availability and resiliency challenges when
running application workloads on Kubernetes.

This database uses replicas for high availability and supports synchronization through
the use of the Raft protocol. Additional features include partitions (called tablets) for scal-
ability, and in case of a cross-tablet transaction, the two-phase commit protocol is also
implemented.

YugabyteDB automatically partitions SQL tables into tablets without user intervention. It
also automatically distributes tablet replicas to the configured failure domains ensuring, as
much as possible, no data loss. This behavior can be influenced by the user configuring the
failure domains, replication factor, and database affinity to failure domains.

Deployment Flexibility
YugabyteDB runs in public, private, and hybrid cloud environments, on VMs, containers or
bare metal. Organizations can deploy the database in any Kubernetes environment. It is also
available as a multi-cloud, fully managed database-as-a-service (DBaaS) for a frictionless
experience. YugabyteDB offers the widest range of replication and geo-distribution options
among distributed SQL databases.

High Performance
YugabyteDB can handle high throughput, low latency transactions on Kubernetes. It is
proven in production to scale beyond 1 million transactions per second and thousands of
concurrent connections.

https://www.yugabyte.com/yugabytedb/
https://raft.github.io/
https://docs.yugabyte.com/latest/reference/configuration/yb-tserver/#geo-distribution-flags
https://docs.yugabyte.com/latest/reference/configuration/yb-tserver/#geo-distribution-flags
https://docs.yugabyte.com/latest/admin/yb-admin/#set-preferred-zones
https://docs.yugabyte.com/latest/admin/yb-admin/#modify-placement-info

| 11© 2022 Yugabyte. All rights reserved yugabyte + redhat openshift

Operational Simplicity
Organizations can use the self-managed or fully managed DBaaS offerings of YugabyteDB
to simplify operations at the edge and in the cloud. The database also integrates with other
data sources or sinks, allowing data engineers to build pipelines for machine learning, analyt-
ics, long term storage, and disaster recovery.

PostgreSQL Compatibility
YugabyteDB is not just wire compatible with PostgreSQL, it is code compatible. The database
also offers a comprehensive set of advanced RDBMS features including triggers, functions,
stored procedures, and strong secondary indexes. This allows developers to be immediately
productive with the familiar interface and the rich ecosystem of PostgreSQL compatible
frameworks, applications, drivers, and tools.

Security
YugabyteDB is built from the ground up with data security in mind, enabling organizations to
maintain a robust security posture even with a more distributed footprint. YugabyteDB offers
features such as data encryption at rest and in flight, multi-tenancy support at the database
layer with per-tenant encryption, and regional locality of data to ensure compliance as well
as manage geographic access controls.

YugabyteDB and Red Hat OpenShift: Cloud Native Resiliency
at Enterprise Scale

YugabyteDB is available on Red Hat® OpenShift®, the leading enterprise Kubernetes platform
for deploying and managing cloud native applications. It’s a software product built on the
Kubernetes container management project, but adds productivity and security features that
are important to large-scale companies. For all that Kubernetes can do, users still need to
integrate other components like networking, ingress and load balancing, storage, monitor-
ing, logging, and more. Red Hat OpenShift offers these components with Kubernetes at their
core because—by itself—Kubernetes is not enough.

Red Hat OpenShift provides a consistent application platform for the management of exist-
ing, modernized, and cloud native applications that run on any cloud and on-premises. It
also offers a common abstraction layer across any infrastructure to give both developers and
operations teams commonality in how applications are packaged, deployed, and managed.
This means teams can deploy YugabyteDB on Red Hat OpenShift with confidence because the
YugabyteDB container image and the Operator have been Red Hat certified. As a result, both
are well-integrated to run on the platform and enable efficient day 1-2 operations.

https://marketplace.redhat.com/en-us/products/yugabytedb
https://www.redhat.com/en/solutions/cloud-native-development
https://www.redhat.com/en/topics/containers/kubernetes-approach
https://catalog.redhat.com/platform/red-hat-openshift/software/search?q=YugabyteDB&p=1

| 12© 2022 Yugabyte. All rights reserved yugabyte + redhat openshift

“Run Anywhere” Distributed Stateful Workloads
One major benefit to running YugabyteDB on Red Hat OpenShift is the guarantee of geo-dis-
tributed stateful workloads. The below diagram depicts what such an architecture looks like
in practice.

Starting from the top, we have a global load balancer directing connections to the
YugabyteDB UI. Then, there are three Red Hat OpenShift clusters with YugabyteDB instances
deployed to each cluster. These instances can communicate with each other via a network
tunnel implemented with Submariner.

Finally, at the bottom of the diagram, Red Hat Advanced Cluster Manager (RHACM) has been
installed within a control cluster. This is used to create the other clusters along with the
global load balancer operator, which facilitates configuring the global load balancer at the
top of the diagram.

Each cluster is in a different region of a public cloud provider.

Zooming in on the YugabyteDB deployment, we have three tablet servers and a master
(metadata server) in each cluster. Together, they form a logical YugabyteDB instance.

Load test results reveal this kind of deployment is usable in production, as is shown by the
integration work done between Yugabyte and Red Hat in this Geographically Distributed
Stateful documentation.

https://catalog.redhat.com/platform/red-hat-openshift/software/search?q=load%20balancer&p=1
https://www.redhat.com/en/technologies/management/advanced-cluster-management
https://cloud.redhat.com/blog/geographically-distributed-stateful-workloads-part-five-yugabytedb
https://cloud.redhat.com/blog/geographically-distributed-stateful-workloads-part-five-yugabytedb

| 13© 2022 Yugabyte. All rights reserved yugabyte + redhat openshift

Zero Data Loss and Continuous Availability
Another benefit to running YugabyteDB on Red Hat OpenShift is zero data loss and continu-
ous availability during a major system outage or natural disaster.

For example, in the diagram on the following page, the network of one region is isolated by
preventing any inbound or outbound traffic while running a TPC-C test.

When simulating this disaster, there were a few errors in the surviving TPC-C clients; essen-
tially, some in-flight transactions were rejected or failed to complete. But YugabyteDB moved
all of the tablet leaders to the healthy instances.

| 14© 2022 Yugabyte. All rights reserved yugabyte + redhat openshift

The system managed the disaster without the need for any human intervention.
When connectivity to the isolated region was restored, there were no issues within the ongo-
ing TPC-C clients. YugabyteDB rebalanced the database by moving the tablet leaders back to
the newly-available tablet servers. Again, no human intervention was needed.

During this simulation, the system experienced zero data loss (RPO 0 and very little unavail-
ability (RTO measured in seconds).

Getting Started with YugabyteDB on Red Hat OpenShift
YugabyteDB brings support for both scale-out RDBMS and internet-scale OLTP workloads
onto Red Hat OpenShift. This enables customers to transition these workloads to enter-prise-
grade Kubernetes. The YugabyteDB Operator allows developers to run YugabyteDB clusters
on Red Hat OpenShift using the same cloud native practices they have come to use with
stateless applications, such as scaling and managing the lifecycle of workloads using CI/CD
pipelines. You can find the YugabyteDB Kubernetes Operator in the OperatorHub of your Red
Hat OpenShift environment.

The below figure shows a high-level overview of the components involved for deploying a
YugabyteDB cluster on Red Hat OpenShift using the YugabyteDB Operator.

A YugabyteDB cluster deployment consists of two distributed services: yb-tserver and
yb-master. The yb-tserver service is responsible for storing the application data and serving
the client requests. yb-master is a lightweight service responsible for maintaining the system
metadata (including table-to-shard-to-node mapping) and performing background oper-
ations such as automatic data rebalancing. You can learn more about the components in a
YugabyteDB cluster here.

https://catalog.redhat.com/software/operators/detail/5e98749cfc8e35792689938a
https://marketplace.redhat.com/en-us/products/yugabytedb
https://docs.yugabyte.com/latest/architecture/concepts/yb-tserver/
https://docs.yugabyte.com/latest/architecture/concepts/yb-master/
https://blog.yugabyte.com/basic-introduction-to-yugabyte-db-components
https://blog.yugabyte.com/basic-introduction-to-yugabyte-db-components

| 15© 2022 Yugabyte. All rights reserved yugabyte + redhat openshift

Red Hat OpenShift provides a managed Kubernetes cluster. Operator Lifecycle Manager
(OLM) is responsible for managing the lifecycle of the YugabyteDB Operator pods and CRDs
that are registered with the Kube API. On creating an instance of the custom resource ybclus-
ters.yugabyte.com, the YugabyteDB Operator creates the necessary statefulset pods with
provided attributes like replication factor and desired pod count. It bootstraps the additional
services including a LoadBalancer service for exposing the YugabyteDB admin console.

Yugabyte Platform, as shown in the above figure, can also be deployed in a Red Hat OpenShift
environment. It provides the simplicity and support to deliver a self-managed DBaaS at scale.
Yugabyte Platform is Yugabyte’s recommended mechanism for provisioning and managing
the lifecycle of YugabyteDB clusters.

Here are step-by-step instructions for getting started with YugabyteDB on Red Hat
OpenShift:

Deploy Yugabyte Platform using the YugabyteDB operator
Configure Red Hat OpenShift within Yugabyte Platform
Create and manage deployments using Yugabyte Platform

Conclusion
Kubernetes has been a paradigm shift in the way enterprises build and deploy applications to
cater to the needs of an increasingly cloud native world. There is no one-size-fits-all database
reference architecture that works for all applications in this environment. Depending on the
requirements of the application and tradeoffs involved, enterprises will choose different
topologies to meet their needs, and change the topologies when needs change. Distributed
SQL databases offer a powerful and versatile data layer for running applications in both the
cloud and Kubernetes environments.

1.
2.
3.

https://docs.openshift.com/container-platform/4.7/operators/understanding/olm/olm-understanding-olm.html
https://docs.openshift.com/container-platform/4.7/operators/understanding/olm/olm-understanding-olm.html
https://www.yugabyte.com/platform/
https://docs.yugabyte.com/latest/yugabyte-platform/install-yugabyte-platform/install-software/openshift/#operator-based-installation
https://docs.yugabyte.com/latest/yugabyte-platform/configure-yugabyte-platform/set-up-cloud-provider/openshift/
https://docs.yugabyte.com/latest/yugabyte-platform/create-deployments/

| 16© 2022 Yugabyte. All rights reserved yugabyte + redhat openshift

About Yugabyte, Inc.
Yugabyte is the company behind YugabyteDB, the open source, high-performance dis-
tributed SQL database for building global, cloud-native applications. YugabyteDB serves
business-critical applications with SQL query flexibility, high performance and cloud-native
agility, thus allowing enterprises to focus on business growth instead of complex data infra-
structure management. It is trusted by global companies in cybersecurity, financial mar-
kets, IoT, retail, e-commerce, and other verticals. Founded in 2016 by former Facebook and
Oracle engineers, Yugabyte is backed by Lightspeed Venture Partners, 8VC, Dell Technologies
Capital, Sapphire Ventures, and others.

About Red Hat, Inc.
Red Hat is the world’s leading provider of enterprise open source software solutions, using a
community-powered approach to deliver reliable and high-performing Linux, hybrid cloud,
container, and Kubernetes technologies. Red Hat helps customers integrate new and existing
IT applications, develop cloud-native applications, standardize on our industry-leading oper-
ating system, and automate, secure, and manage complex environments. Award-winning
support, training, and consulting services make Red Hat a trusted adviser to the Fortune 500.
As a strategic partner to cloud providers, system integrators, application vendors, customers,
and open source communities, Red Hat can help organizations prepare for the digital future.

Get in Touch
www.yugabyte.com | contact@yugabyte.com

yugabyte.com
/slack

twitter.com
/yugabyte

linkedin.com/company
/yugabyte

instagram.com
/yugabyte

https://www.yugabyte.com/
https://www.yugabyte.com/
https://www.yugabyte.com/
https://www.redhat.com/en
https://access.redhat.com/recognition
https://www.redhat.com/en/about/company?sc_cid=70160000000e5syAAA
https://www.redhat.com/en
https://twitter.com/Yugabyte?ref_src=twsrc%5Egoogle%7Ctwcamp%5Eserp%7Ctwgr%5Eauthor
https://www.instagram.com/Yugabyte/
https://www.linkedin.com/company/yugabyte/mycompany/
https://communityinviter.com/apps/yugabyte-db/register
https://www.yugabyte.com/contact/

