
Red Hat OpenShiftで進化する
アプリケーションデリバリー

Toshihiro Araki
Specialist Solution Architect



Trusted Comprehensive Consistent
Container engine Application platform Across hybrid cloud 

Reduce 
Risk

リスク  = ↓↓

Improve
Productivity

生産性  = ↑↑

Increase
Flexibility

柔軟性  = ↑↑

OpenShiftを選ぶべき理由

トラステッドな
コンテナエンジン

包括的なアプリケーション
プラットフォーム

ハイブリッドクラウド全体
にわたる⼀貫性

#
#


3

OpenShift 包括的なアプリケーションプラットフォーム

Managed Kubernetes Service

xKS

LoggingMonitoring

Dev Tools Service MeshCI/CD

Registry

Additional Cloud Services or Software Components

Public cloud
Physical

Dev Tools Service MeshCI/CD

RegistryMonitoring Logging

OpenShift Kubernetes Engine

Physical Virtual Private cloud Public cloud Edge

ハイブリッド クラウド全体にわたって信頼性と⼀貫性を実現

Application 
Platform



Developers Web Console & CLI                          Developer Tools                           Developer Workspaces

4

Secure apps
Enforce policyAuth & SSO CVE scanningService mesh

Deliver apps
CI/CD Image registry ObservabilityGitOps

Build apps
Runtimes Image build Cloud APIsServerless

トラステッドで、包括的で一貫した
アプリケーション プラットフォーム



Build Applications
アプリケーションのビルド



6

Build Applications

開発者の迅速なオンボーディングを可能にす
るWeb IDEを提供

既存アプリケーションにも対応した多様な開
発⾔語やフレームワークをサポート

ソースコードからコンテナイメージを⾃動⽣
成するSource-to-Image（S2I）と
Buildpacksを提供

イベント駆動型のサーバーレスアプリや関数
により、インフラ管理から解放されビジネス
ロジックに集中

パブリッククラウドやコンテナサービスを統
合的に管理するクラウドネイティブなコント
ロールプレーンを提供

アプリケーションのビルド



7

What’s next: 

Shipwright Buildsを用いたソースコードからのイメージ構築

● ソースコードからS2IやBuildpacksを使ってイメージをビルド

● PaketoコミュニティのBuildpacksとUBI Buildpacksのサポート

● ⾃分⾃⾝のBuildpacksを持ち込むことが可能

● Tekton、GitHub、GitLabのパイプラインでShipwrightビルドを実⾏

● マルチアーキテクチャビルド戦略（例：Armおよびx86）

● BuildConfigsからShipwrightビルドへの移⾏ガイド

Builds for 
OpenShift

(Shipwright)

Git 
repository

Base 
images

Application
image

Tools 
images

● Buildpacks
● Source-to-Image
● Buildah
● Kaniko (community)
● ko (community)



8

What’s next: 

Orchestrate serverless apps with serverless Logic 

● サービスの呼び出しやイベントの統合した処理

● 状態を保持した⻑時間実⾏のワークフローを実現

● ⻑時間実⾏のワークフローでもリソースをゼロにスケールダウン

● データの整合性を保つためのエラーハンドリングと復旧策

● CNCFが定めたサーバーレスワークフローの仕様に準拠



Deliver Applications
アプリケーションの配信



10

Deliver Applications

メトリクス、アラート、トレース、ログ、電⼒消
費監視を通じたフルスタックの可観測性

ソフトウェアのビルド、テスト、セキュリティを
⾃動化し、継続的インテグレーションを実現

GitOps、カナリアリリース、デプロイ分析を⽤い
た継続的デリバリー

レガシーアプリケーションをクラウドネイティブ
な仮想マシンに移⾏

組織全体でコンテナイメージを安全に保存‧配布

アプリケーションの配信



11

● ハブアンドスポークアーキテクチャ

● スポーククラスタ上のパイプラインエージェント

● ハブクラスタ上のリポジトリ、資格情報、設定

● コントロールプレーンがスポーククラスタにPipelineRunsをスケ

ジュール：負荷分散、タグ戦略など

● メトリクス、ログ、アーティファクトに関する中央集約的なインサイ

ト

What’s next: 

マルチクラスタ環境でのPipelines-as-code

OpenShift

Pipelines-as-code
Control Plane

.tekton

Git event

OpenShift

Agent

     PipelineRun

     PipelineRun

OpenShift

Agent

     PipelineRun

     PipelineRun

OpenShift

Agent

     PipelineRun

     PipelineRun



12

● Tektonにおける依存関係キャッシングのステップアクション

● PipelineRun上のアノテーションを通じて設定可能

● Pipelines-as-Codeリゾルバーでの標準機能

● キャッシュストレージ：OCIアーティファクトおよびS3

What’s next: 

Tekton Pipelinesでの依存関係のキャッシュ

PipelineRun

Fetch Repo

Build

Cache-fetch 

Cache-upload 

Execute PipelineRun

OpenShift Pipelines: 
Pipelines-as-code

StepAction

StepAction

.tekton

Git event



13

What’s next: 

⻑期的なパイプライン実⾏履歴

● パイプライン履歴のストレージがPipelineRunのカスタム
リソースから切り離され、柔軟性を向上

● 実⾏メタデータがTekton Resultsを通じて保存され、監査
に役⽴つ情報を提供

● ログ⽤のプラガブルストレージプロバイダーを利⽤可能
で、保存の選択肢を拡⼤

● Tektonリソースの積極的な整理を実現し、効率的な管理
をサポート

● クラスター内でのTektonパフォーマンスを向上させ、安
定性とスピードを強化



14

● ゼロダウンタイムのデプロイメントをGitOpsで実現:
カナリアリリースやブルーグリーンデプロイメントの実施

● デプロイメント成功を評価するためのメトリクスベースの
分析:
Prometheus、DataDog、NewRelic、CloudWatch、
HTTPなど

● ⼿動および⾃動によるロールバックとプロモーションの実
⾏

● サービスメッシュによる細かいトラフィックシフトの実現

What’s next: 

”Argo Rollouts”:デプロイ時のリスク低減

LB

v1 v2

LB

v1 v2

LB

v1 v2

LB
10% 33% 100%

1 2 3 4



OpenShift

● イメージレジストリの監視: Quay、JFrog、GitHub、GitLab、

GCPなどのイメージに対する更新を追跡

● Gitの書き戻しサポート: 永続的な更新を実現

● 複数の更新戦略: セマンティックバージョニング（semvar）、

latest、digest

Ex: 1.x, 1.2.x

● タグのフィルタリング: マッチャー関数を使用してタグを絞り込む

15

What’s next: 

”Argo CD Image Updater”新しいイメージの自動デプロイ

CIImage Registry

Push new 
image

app-1.2.1

watch

Git Repository

Git commit app-1.2.1

app-1.2.1
sync



OpenShift

16

● ハブ＆スポークアーキテクチャ: 中⼼にコントロールプ
レーンを持つ構成

● ハブクラスター上の単⼀コントロールプレーン: すべての
管理を集中管理

● 管理クラスターに展開された⼩型エージェント: 各クラス
ターでの軽量な運⽤

● エージェントからコントロールプレーンへの通信: シーム
レスな接続

● 管理クラスターでのリコンシリエーション: 状態の⼀致を
保持

● Red Hat Advanced Cluster Management (ACM)との統合: 
フリートとポリシー管理の効率化

What’s next: 

Argo CD controlplane：マルチクラスターでGitOpsを拡張

OpenShift

Managed Clusters

Argo CD 
Control Plane

Certified 
Kubernetes

Agent Agent Agent

Git Repository

AKS/EKS/GKE

pull



Secure Applications
安全なアプリケーション



18

Secure Applications

アプリケーションのビルド、デプロイ、実行時にお

けるセキュリティポリシーの適用

With Red Hat Advances Cluster Security

レガシーおよびクラウドネイティブアプリケーショ

ンの認証とシングルサインオン

ゼロトラストセキュリティを実現するアプリケー

ションネットワーキングとサービスメッシュ

SSL/TLS証明書や機密データのオンデマンドラ

イフサイクル管理

脆弱性管理とCVEスキャンによる早期修正



Service Mesh● Istioとの統合: Maistraを使⽤せず、上流のIstioに統合

● Istioのコマンドラインユーティリティ: Istioctlが利⽤可能

● コントロールプレーンのリビジョンとカナリアアップグレード: 
バージョン管理とカナリアアップグレードの機能を提供

● マルチクラスターのトポロジー: マルチプライマリーや外部コント
ロールプレーンなどの構成をサポート

● Gateway API: サービスネットワーキングのための新しい
Kubernetes標準

● Ambientモードのデータプレーン: サイドカーなしでの設定が可能
なデータプレーン

● Kubernetes外のサービスのメッシュへの統合: Kubernetes以外の
サービスもメッシュに含めることができる19

What’s next: 

OpenShift Service Mesh 3

Cluster: West Cluster: East

Controlplane

Service A Service C

Service B Service D



linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

Thank you


