订阅我们的博客

In November 2017, we highlighted our collaboration with key partners like NVIDIA in bringing performance-sensitive applications to Kubernetes and, ultimately, to Red Hat OpenShift. With today’s launch of Red Hat OpenShift Container Platform 3.10, we’re pleased to say that Red Hat’s enterprise Kubernetes platform is now well-positioned to handle several of these demanding workloads, offering a modern, fully open Kubernetes platform upon which to run next-generation applications.

But first, let’s look at the concepts of “intelligent and performance-sensitive applications.” Increasingly, enterprises are focused on digital transformation (using digital technologies like Linux containers and Kubernetes) to help drive differentiated offerings and improve the customer experience. Out of this digital transformation, new workloads are emerging, like artificial intelligence, machine learning, and neural networks, which consume and analyze the vast reams of data created by the digital enterprise to drive innovation. Just as important are existing applications for financial transaction processing, telecommunications, and the like, which require high-performance and low-latency to drive efficiencies.

Emerging or not, these types of workloads would, at one time, be looked at as specific to bare-metal, in that they needed the speed and raw performance offered by running directly on server hardware without any abstracted software layer.

That’s no longer the case. Thanks to work done by Red Hat, our partners, and the Kubernetes community, we’re now able to support several key features within the latest version of Red Hat OpenShift Container Platform that make it possible to run these workloads in production. This means that organizations no longer have to rely on maintaining workload-specific hardware or being locked into a cloud provider to specifically bring these applications to bear - Red Hat OpenShift Container Platform 3.10 offers more choice when it comes to building a foundation for performance-sensitive applications.

So what are these features?

Hugepages
New to Red Hat OpenShift Container Platform 3.10 is full support for hugepages. Hugepages are a commonly used performance optimization technique for large-memory applications, such as databases, Java workloads, matching engines and more. Frequently, these types of applications can be classified as performance-sensitive, and this addition further delivers a clear pathway for these workloads to live on OpenShift.

Previously only available in Tech Preview, the hugepages feature supports the allocation and consumption of pre-allocated hugepages, making them a first-class entity in OpenShift. If hugepages are available on a node, the Kubelet will advertise them for consumption by applications.

CPU Manager
CPU capacity in OpenShift and Kubernetes is advertised and scheduled in milli-cores. The default behavior of applications running on OpenShift is to timeshare those milli-cores across all available CPUs in the system. This approach works for many applications.

However, there are a class of applications -- like artificial intelligence, machine learning, and data sciences, just to name a few -- whose performance is affected by this time-sharing approach. The CPU Manager feature in the latest release of Red Hat OpenShift provides these applications with a way to schedule and reserve whole cores for themselves, which helps reduce TLB misses and context-switching and improve CPU cache residency of application code.

Device Manager
Also new to Red Hat OpenShift Container Platform 3.10 is Device Manager. The Device Manager is a Kubelet feature that provides a mechanism for advertising specialized node hardware resources with the help of Kubelet plug-ins known as device plugins. Device plugins are vendor-provided container images (generally daemonsets) that work with the Kubelet to advertise hardware resources such as GPUs or FPGAs.

With these features, organizations can run these applications on OpenShift natively, helping to ease the transition between legacy platforms and containerized workloads running on Kubernetes. This provides more freedom of movement for applications and expands performance-sensitive workload capabilities across the hybrid cloud, enabling greater choice for enterprises as they develop digital transformation strategies to better serve their customers and end users.

To learn more about the performance-sensitive features in Red Hat OpenShift Container Platform 3.10 as well what’s new in the latest version of the industry’s most comprehensive enterprise Kubernetes platform, visit https://blog.openshift.com/red-hat-openshift-container-platform-3-10-is-now-available-for-download.

Jeremy Eder is a senior principal performance engineer at Red Hat.


关于作者

A 20+ year tech industry veteran, Jeremy is a Distinguished Engineer within the Red Hat OpenShift AI product group, building Red Hat's AI/ML and open source strategy. His role involves working with engineering and product leaders across the company to devise a strategy that will deliver a sustainable open source, enterprise software business around artificial intelligence and machine learning.

Read full bio

按频道浏览

automation icon

自动化

涵盖技术、团队和环境的最新自动化平台

AI icon

人工智能

平台更新使客户可以在任何地方运行人工智能工作负载

cloud services icon

云服务

有关我们的托管云服务组合的更多信息

security icon

安全防护

有关我们如何跨环境和技术减少风险的最新信息

edge icon

边缘计算

简化边缘运维的平台更新

Infrastructure icon

基础架构

全球领先企业 Linux 平台的最新动态

application development icon

应用领域

我们针对最严峻的应用挑战的解决方案

Original series icon

原创节目

关于企业技术领域的创客和领导者们有趣的故事