oVirt: An Open Management Framework for Virtualized Environments
Hugh Brock & Perry Myers
Red Hat
Agenda

- Introduction to oVirt
- oVirt Architecture
- Demo
- Features Roadmap
- Getting Involved
- Q & A
What is oVirt

- Represents next generation of open source virtualization
- **Project** from Red Hat's Emerging Technology Group

- Built on open source and open standards
- Built within the community

- Provides the foundation for Red Hat's next generation of virtualization **Products**
What is oVirt

- oVirt project delivers complete virtualization solution
 - Hypervisor
 - Built on Linux kernel
 - Managed using standards based tools
 - Based on libvirt, CIM and LDAP
 - From Red Hat, the community or ISVs
 - Virtualization Management Platform
 - Cross platform – multiple hypervisors
 - Built on open standards
 - LDAP, Kerberos, Libvirt, etc
 - Scalable
 - From 1 node to tens of thousands of nodes
 - From small host cluster to cloud computing infrastructure
 - Secure
 - Integrated policy and audit framework
Why do we need oVirt

- Current generation of solutions built on proprietary architectures and protocols
 - Lack of standards
 - Vendor lock in
 - Hypervisor and management platform intrinsically linked
 - Locked into management solution from hypervisor vendor
 - Lack of interoperability
 - Different management platform required for each hypervisor
 - Not integrated into enterprise
 - Separate tools for physical systems and each hypervisor
 - No centralized authentication, authorization or audit
 - Security concerns limiting deployment of virtualization solutions
Libvirt : Management based on open standards

- Provides a standard management interface
 - Hypervisor agnostic
 - Will work with multiple hypervisors
 - Stable API
 - Shield users from hypervisor changes
 - Consistent tools across hypervisors
 - eg. Same interface for Xen, QEMU, KVM, OpenVZ, LXC, LDoms, etc
 - Scriptable
 - Provides APIs for developers / tool vendors
- Secure
 - Encryption and authentication GSSAPI/SASL2
 - Allows vendors to build cross platform tools
Libvirt: Management based on open standards
What makes up oVirt and how does it all fit together?

- Two major components:
 - oVirt Managed Node
 - oVirt Server Suite
Managed Nodes

- Small footprint embeddable hypervisor
- Based on Linux kernel with KVM Hypervisor
- Requires processors with hardware virtualization
- Runs both Windows and Linux guests
Server Suite

- Administration Web Interface
- Authorization, Authentication and Audit
- Task Queuing
- Status Monitoring
- Performance Monitoring and Visualization
Storage Nodes

- Provides External Storage for Guests
 - NFS – File Based Storage
 - iSCSI
 - Fibre Channel
 - Local Disk
 - Logical Volume Management (LVM)
Integrated with well known Open Source projects:

- Linux kernel
- KVM – Hypervisor
- libvirt – Virtual Machine management
- FreeIPA – Authentication/Authorization
- Cobbler/Koan – Provisioning
- collectd – Performance Data Collection
oVirt Architecture Details

- oVirt Managed Node
- oVirt Server Suite
Managed Node Architecture
Managed Node – What is it?

- Lightweight, small-footprint Fedora 9 install
 - Today less than 64MB Image Size
 - Includes drivers for all hardware supported by Fedora
 - Smaller Images possible for specific hardware spins
 - Targeting 32-48MB

- Stateless

- KVM for Hypervisor

- libvirt for virtual machine management

- collectd for performance data collection
Managed Node – How is it made?

- Fedora 9 standard repositories
- oVirt specific RPMs hosted at http://ovirt.org
- Livecd-tools
 - Customized Kickstart
 - Image Creation/Packaging
 - Image minimization
- Will use the Appliance OS Toolkit to build the Managed Node
Managed Node – How is it deployed?

- Can be deployed in several different ways:
 - Embedded/External Flash
 - eg. SD cards and USB keys
 - Network Boot via PXE
 - Local CD-ROM
 - Installed on local hard drive

- Can be preloaded on OEM hardware
Managed Node – Boot Process

■ Stateless
■ Registers with oVirt Server
■ Authentication Credentials
 • Pulled dynamically from server
 • Locally attached storage
 • Trusted Platform Module (TPM)
■ Hardware Enumeration
■ oVirt Daemons
 • libvirtd
 • Status and Performance Monitoring
Managed Node Architecture
Server Suite Architecture
- oVirt preferred authorization and authentication package is FreeIPA Kerberos + LDAP
- Any standard Kerberos server will work
- Any standard LDAP server will work
Taskomatic pulls tasks off queue, makes libvirt calls, updates oVirt db with results

Host-browser waits for hosts to come online, updates oVirt db with host info

Host-status monitors hosts, updates oVirt db
All three daemons communicate with oVirt managed nodes via libvirt calls

Default oVirt transport is libvirt + SASL/GSSAPI

Larger scale installations will use MRG messaging instead
- AMQP Messaging
- Collectd + libvirt
- Round Robin Database (RRD) accumulates statistics
- oVirt Stats API provides statistics to UI
- Stats API extensible for SNMP, other performance data stores
Server Suite: UI

- Usability foremost
- Virtual infrastructure control to users
- Admins retain hardware control
- Rails allows rapid development
- Standard transactional RDBMS
Server Suite Architecture
Deployment Types

- Developer Appliance
- Bundled Appliance
- Production/Enterprise Installation
oVirt: Management Interface

Hosts

<table>
<thead>
<tr>
<th>Hostname</th>
<th>UUID</th>
<th>Hypervisor</th>
<th>CPUs</th>
<th>Speed (MHz)</th>
<th>Arch</th>
<th>RAM (MB)</th>
<th>Status</th>
<th>Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>node138.priv.ovirt.org</td>
<td>node138.priv.ovirt.org</td>
<td>QEMU</td>
<td>1</td>
<td>1995</td>
<td>x86_64</td>
<td>498</td>
<td>unavailable (enabled)</td>
<td></td>
</tr>
<tr>
<td>node140.priv.ovirt.org</td>
<td>node140.priv.ovirt.org</td>
<td>QEMU</td>
<td>1</td>
<td>1995</td>
<td>x86_64</td>
<td>498</td>
<td>unavailable (enabled)</td>
<td></td>
</tr>
<tr>
<td>node141.priv.ovirt.org</td>
<td>node141.priv.ovirt.org</td>
<td>QEMU</td>
<td>1</td>
<td>1995</td>
<td>x86_64</td>
<td>498</td>
<td>unavailable (enabled)</td>
<td></td>
</tr>
<tr>
<td>node142.priv.ovirt.org</td>
<td>node142.priv.ovirt.org</td>
<td>QEMU</td>
<td>1</td>
<td>1995</td>
<td>x86_64</td>
<td>498</td>
<td>unavailable (enabled)</td>
<td></td>
</tr>
<tr>
<td>node143.priv.ovirt.org</td>
<td>node143.priv.ovirt.org</td>
<td>QEMU</td>
<td>1</td>
<td>1995</td>
<td>x86_64</td>
<td>498</td>
<td>unavailable (enabled)</td>
<td></td>
</tr>
<tr>
<td>node144.priv.ovirt.org</td>
<td>node144.priv.ovirt.org</td>
<td>QEMU</td>
<td>1</td>
<td>1995</td>
<td>x86_64</td>
<td>498</td>
<td>unavailable (enabled)</td>
<td></td>
</tr>
<tr>
<td>node145.priv.ovirt.org</td>
<td>node145.priv.ovirt.org</td>
<td>QEMU</td>
<td>1</td>
<td>1995</td>
<td>x86_64</td>
<td>498</td>
<td>unavailable (enabled)</td>
<td></td>
</tr>
<tr>
<td>node146.priv.ovirt.org</td>
<td>node146.priv.ovirt.org</td>
<td>QEMU</td>
<td>1</td>
<td>1995</td>
<td>x86_64</td>
<td>498</td>
<td>unavailable (enabled)</td>
<td></td>
</tr>
<tr>
<td>node147.priv.ovirt.org</td>
<td>node147.priv.ovirt.org</td>
<td>QEMU</td>
<td>1</td>
<td>1995</td>
<td>x86_64</td>
<td>498</td>
<td>unavailable (enabled)</td>
<td></td>
</tr>
<tr>
<td>node150.priv.ovirt.org</td>
<td>node150.priv.ovirt.org</td>
<td>QEMU</td>
<td>1</td>
<td>1995</td>
<td>x86_64</td>
<td>498</td>
<td>unavailable (enabled)</td>
<td></td>
</tr>
<tr>
<td>node5.priv.ovirt.org</td>
<td>node5.priv.ovirt.org</td>
<td>QEMU</td>
<td>1</td>
<td>1995</td>
<td>x86_64</td>
<td>498</td>
<td>available (enabled)</td>
<td></td>
</tr>
</tbody>
</table>

node5.priv.ovirt.org

- **UUID**: node5.priv.ovirt.org
- **CPUs**: 1
- **Speed**: 1995 MHz
- **Memory**: 498 MB
- **Architecture**: x86_64
- **Hypervisor**: QEMU
- **Status**: available (enabled)

Metrics

- **Overall Load**: 0
- **CPU**: 88%
- **Memory**: 34%
- **Network In**: 16 mb/s
- **Network Out**: 50 mb/s
Demo

- Show how the Management UI can be used to:
 - Create new Hardware/Virtual Machine Pools
 - Attach Storage
 - Create and Provision new Virtual Machines
- Show Managed Node Boot
Features Roadmap – Managed Node

- Standalone Node Operation
 - Local Management Console
 - No oVirt Server Needed
 - Local management with oVirt Server

- Additional Hypervisor Support
 - Xen
 - Other HVs as libvirt provides support

- xenner – Run Xen paravirtualized guests

- Clustering/High Availability Support

- Paravirtualized Drivers Support
Features Roadmap - Infrastructure

- Provisioning Enhancements
 - Tighter Integration with Cobbler
 - Support for Windows Provisioning
- Distributed Architecture
- Messaging Support
- Easy Integration with alternate Servers
 - Databases
 - Kerberos Servers
 - Directory Servers
Features Roadmap - Management

- Scriptable APIs for oVirt Server and Managed Node
- Flexible Rules Engine
- Finer Grained Permissions/Roles
- Guest Migration
 - offline/live
 - manual/automated
 - Intelligent migration
- Guest Performance Monitoring
- SLA Definitions
Getting Involved

- Active developer community at: http://www.ovirt.org
 - Downloads
 - Documentation
 - Features Roadmap
 - Wiki
- Mailing list: ovirt-devel@redhat.com
- IRC Channel: #ovirt on freenode.net
- Source Repository:

git clone git://git.et.redhat.com/ovirt
Download, Use, Contribute!

- Prebuilt developer appliance available
 - Host Hardware – Hardware virtualization support
 - Host OS – Fedora 9 x86_64
 - Download, extract and run

- Build your own appliance
 - Check out git repository
 - See Install Instructions
 - Build appliances for both i386 & x86_64 platforms
 - Build both bundled and developer style appliances

- Contribute patches to ovirt-devel mailing list
Questions & Answers
Contact Us!

- http://www.ovirt.org
- ovirt-devel@redhat.com
- #ovirt on freenode.net
- Hugh Brock - hbrock@redhat.com
- Perry Myers - pmyers@redhat.com