Having a grasp of common architectural patterns is essential to designing software architecture at scale. Using them not only saves time but also ensures a reliable implementation of your design. There’s no need to reinvent the wheel when there’s an architectural pattern available that applies to an architecture you’re developing.

The following is a brief overview of the CQRS architectural pattern.

[ Download An architect's guide to multicloud infrastructure. ]

Understanding the CRQS pattern

The Command Query Responsibility Segregation (CQRS) pattern separates a service’s write tasks from its read tasks. While reading and writing to the same database is acceptable for small applications, distributed applications operating at web-scale require a segmented approach. Typically there’s more read activity than write activity. Also, read activity is immutable. Thus, replicas dedicated to reading data can be spread out over a variety of geolocations. This approach allows users to get the data that closest to them. The result is a more efficient enterprise application.

Service reads and writes from different databases

Separating write from read activity also allows Enterprise Architects to create a variety of read databases, with each database optimized for a specific purpose.

Pros

  • Separating write activity from ready activities allows you to use the best database technology for the task at hand, for example, a SQL database for writing and a non-SQL database for reading.
  • Read activity tends to be more frequent than writing, thus you can reduce response latency by placing read data sources in strategic geolocations for better performance.
  • Separating write from read activity leads to more efficient scaling of storage capacity based on real-world usage.

Cons

  • Supporting the CQRS pattern requires expertise in a variety of database technologies.
  • Using the CQRS patterns means that more database technologies are required hence there is more inherent cost either in terms of hardware or if a cloud provider is used, utilization expense.
  • Ensuring data consistency requires special consideration in terms of Service Level Agreements (see the CAP theorem).
  • Using a large number of databases means more points of failure, thus companies need to have comprehensive monitoring and fail-safety mechanisms in place to provide adequate operation

[ A free guide from Red Hat: The automation architect's handbook. ] 

Putting it all together

CQRS is a popular architecture pattern because it addresses a common problem to most enterprise applications. Separating write behavior from read behavior, which the essence of the CQRS architectural pattern, provides stability and scalability to enterprise applications while also improving overall performance. Choose it for those times when contention over read and write access overwhelms your systems and you're willing to make the investment that's necessary to address the issue. For a deeper dive, read our illustrated guide to CQRS.


关于作者

Bob Reselman is a nationally known software developer, system architect, industry analyst, and technical writer/journalist. Over a career that spans 30 years, Bob has worked for companies such as Gateway, Cap Gemini, The Los Angeles Weekly, Edmunds.com and the Academy of Recording Arts and Sciences, to name a few. He has held roles with significant responsibility, including but not limited to, Platform Architect (Consumer) at Gateway, Principal Consultant with Cap Gemini and CTO at the international trade finance company, ItFex.

UI_Icon-Red_Hat-Close-A-Black-RGB

按频道浏览

automation icon

自动化

有关技术、团队和环境 IT 自动化的最新信息

AI icon

人工智能

平台更新使客户可以在任何地方运行人工智能工作负载

open hybrid cloud icon

开放混合云

了解我们如何利用混合云构建更灵活的未来

security icon

安全防护

有关我们如何跨环境和技术减少风险的最新信息

edge icon

边缘计算

简化边缘运维的平台更新

Infrastructure icon

基础架构

全球领先企业 Linux 平台的最新动态

application development icon

应用领域

我们针对最严峻的应用挑战的解决方案

Virtualization icon

虚拟化

适用于您的本地或跨云工作负载的企业虚拟化的未来