Jump to section
定价

在红帽 OpenShift 上运行 AI/ML

复制 URL

利用 AI 加速 IT 自动化

阅读这本电子书,了解红帽 ® Ansible® Lightspeed 如何使用 IBM watsonx Code Assistant 帮助用户通过自然语言提示将其自动化的想法变成红帽 Ansible 自动化平台的代码。

凭借自助式红帽 OpenShift 或 AI/ML 云服务,在红帽 OpenShift 上运行 AI/ML 可以为 AI/ML 工作流提速并加快 AI 驱动型智能应用的交付。

MLOps:红帽 OpenShift 助力机器学习运维

红帽 OpenShift 包含多项关键功能,可以跨数据中心、公共云计算和边缘计算以一致的方式实现机器学习运维(MLOps)

构建生产就绪型 AI/ML 环境的首要考虑因素

通过应用 DevOps 和 GitOps 原则,企业可以自动化并简化将机器学习模型集成到软件开发、生产、监控、再训练和重新部署的迭代流程,以保持预测的准确性。 

ML 生命周期是一个多阶段的过程,旨在借助各种海量数据、丰富的计算和开源机器学习工具来构建智能应用。

在组织内成功实施 MLOps 的五大方式

数据科学家主要负责 ML 建模,确保所选模型持续提供最高的预测准确性。 

数据科学家面临的主要挑战是:

  • 选择和部署正确的 ML 工具(例如 Apache Spark、Jupyter notebook、TensorFlow 和 PyTorch 等)
  • 训练、测试、选择和复训 ML 模型以获得最高预测准确性需要大量时间,且过程复杂
  • 由于缺乏硬件加速功能,建模和推理任务的执行速度很缓慢
  • 反复依赖 IT 运维来置备和管理基础架构
  • 需要与数据工程师和软件开发人员合作,确保输入数据的清洁,并在应用开发过程中成功部署 ML 模型

开发人员与数据科学家的五大协作方式

红帽® OpenShift® 是一个集成应用平台,用于跨混合云和边缘环境管理 AI/ML 生命周期。通过提供对协作工作流程、密集计算能力 (GPU) 和简化运维的自助访问,OpenShift 能够持续且大规模地简化 AI 解决方案的交付。
 

红帽 OpenShift AI

红帽 Openshift AI 为数据科学家和智能应用开发人员提供涵盖 AI/ML 实验和模型的整个生命周期的工具。它可提供一个享受全面支持的沙盒,在部署至生产环境前,可先在这个沙盒中快速开发、训练和测试公共云中的机器学习(ML)模型。

为数据科学家赋能

  • 跨混合云为数据科学家提供一致的自助式云体验
  • 赋予数据科学家灵活性和可移植性,让他们可以使用所选择的容器化 ML 工具来快速构建、扩展、复制和共享 ML 模型。
  • 通过红帽认证的 Kubernetes Operator,为红帽自助式和 AI 云服务选项使用最契合的 ML 工具。
  • 消除对 IT 团队的依赖,为计算密集型的迭代式 ML 建模任务置备基础架构。
  • 无需再担忧“受制于”任何特定云提供商及其 ML 工具选项。
  • 与 CI/CD 工具紧密集成,ML模型可以根据需要快速迭代部署。

加速计算密集型的 ML 建模工作

OpenShift 通过红帽认证 GPU operator,集成了流行的硬件加速器(如 NVIDIA GPU),从而可以无缝地满足高计算资源要求,帮助选择最佳 ML 模型以提供最高预测准确性,并在模型在生产中遇到新数据时协助 ML 推理工作。

开发智能应用

OpenShift 内置的 DevOps 功能使 MLOps 能够加快交付 AI 驱动型应用,并简化集成 ML 模型和持续重新部署以提高预测准确性的迭代流程。    

把 OpenShift DevOps 自动化功能注入到 ML 生命周期,为数据科学家、软件开发人员和 IT 运维之间的协作提供支持,ML 模型也因此可以快速集成到智能应用的开发中。这能够有效提高生产力,并简化 ML 驱动的智能应用的生命周期管理。

  • 通过 OpenShift Build 在容器模型镜像仓库的基础上构建应用。
  • 借助 OpenShift Pipelines 对 ML 模型驱动的智能应用进行持续的迭代开发。
  • 借助 OpenShift GitOps 对 ML 模型驱动的智能应用进行持续的自动化部署。
  • 采用红帽 Quay 镜像存储库,方便对模型容器镜像和微服务进行版本管理。

红帽咨询:MLOps 基础

OpenShift 正在帮助各行各业的组织通过在混合云中开发智能应用来加速业务和任务关键型计划的实施。经典的用例包括欺诈检测、数据驱动的诊断互联汽车、石油和天然气勘探、自动保险报价和理赔处理等。

从医疗卫生到金融服务,从电信通讯到汽车制造,各行各业都涌现了具有颠覆性的 AI/ML 用例。红帽发展了一个强大的合作伙伴生态系统,为面向 AI 驱动的智能应用创建、部署和管理 ML 及深度学习模型提供完整的解决方案。

NTT East logo

为了向区域企业和机构提供边缘计算数据分析,NTT East 最近推出了在红帽 OpenShift 上运行的视频 AI 服务。 

通过 NTT 的边缘计算计划,集成了前沿 AI 功能的企业和机构将销售额提高了 144%,入店行窃率降低了 30-40%,同时其客户服务也得以改善。

Galicia logo

阿根廷加利西亚银行与红帽咨询展开合作,在红帽 OpenShift 上构建了基于 AI 的智能自然语言处理(NLP)解决方案,能够将验证时间从几天缩短到几分钟,准确率达到 90%,并将应用停机时间缩短 40%。

红帽 OpenShift 与 NVIDIA 认证系统上运行的 NVIDIA AI Enterprise 软件套件相结合,提供一个可帮助加速各种 AI 用例的可扩展平台。该平台包含来自 NVIDIA 和红帽的关键技术,可在混合云、裸机或虚拟化环境中一致地安全部署、管理和扩展 AI 工作负载。

扩展阅读

检查清单

在企业中成功实施 MLOps 的五大方式

了解红帽 OpenShift 如何助您实施 MLOps

专题研究

适用于 MLOps 的红帽混合云平台的总体经济影响

此研究由红帽委托 Forrester Consulting 开展调查,揭示了某复合型企业的三年投资回报率(ROI)高达 210%。

电子书

构建生产就绪型 AI/ML 环境的首要考虑因素

此资源介绍了如何利用人工智能、机器学习和深度学习进行了切实可行的数据分析,有助于您开启业务转型。

详细了解 OpenShift

产品

企业级应用平台,包含一系列久经测试的服务,可在您选择的基础架构上将应用推向市场。

红帽®开发人员中心提供构建内部开发人员平台的工具,是维护 DevOps 文化的关键部分。

红帽®可信软件供应链帮助企业组织从一开始就将安全防护融入到软件开发生命周期中。

红帽® Ansible® 自动化平台可以自动化 CI/CD 管道的主要阶段,现已成为 DevOps 方法的激活工具。

相关资源

培训

免费培训课程

"通过红帽来运行容器"技术概述

免费培训课程

利用微服务架构开发云原生应用

免费培训课程

容器、Kubernetes 和红帽 OpenShift 技术概述