Following the support of a multi-front-end architecture in libabigail 2.2, version 2.3 of that Application Binary Interface analysis library added support of the BPF Type Format. This article presents a high-level view of how the BTF support was implemented.
Using the multi-front-end architecture of libabigail
In libabigail, a front end is the component that reads a particular type of information usually embedded in a binary and builds an intermediate representation of its Application Binary Interface (ABI).
Each front end understands the specifics of a particular format of type information. For instance, the DWARF front end reads the type information from the DWARF debug data embedded in binaries in the ELF format.
Adding support for the BTF debug information involved writing a new front end dedicated to reading BTF type information from an ELF binary.
The BTF front end is thus instantiated to analyze binaries that contain BTF debug info. Once the intermediate representation of the ABI is built, it is handed over to the existing middle-end for processing.
Organization of the BTF front end
The BTF front end is represented by a new implementation of the abigail::elf_based_reader interface. That implementation is instantiated by the abigail::btf::create_reader factory function. Client code of this function can thus use the BTF front end through the abigail::elf_based_reader abstract interface.
For the curious reader, the code of the BTF front end lies in the file abg-btf-reader.cc and uses the libbpf library to read the BTF type information from the ELF file.
Tools support
Various ABI analysis tools provided by the libabigail package have been adapted to support the new BTF front end.
Namely, abidiff, abipkgdiff, kmidiff, and abidw have all been adapted to support the new BTF format.
The –btf option forces any of these tools to use the BTF type information present in the input binary, or to fall back to using DWARF if no BTF debug information was found. By default, however, if the binary being analyzed is the Linux kernel and if the only debug information available is BTF, then the BTF front end is automatically used, even if the –btf option was not provided on the command line.
Usage example
Let’s write a first version of a simple function:
$ cat -n example-v0.c 1 struct S 2 { 3 int a; 4 char b; 5 }; 6 7 int 8 example_function(struct S *s) 9 { 10 return s->a; 11 } $
Now let’s compile that small example code using the GCC compiler and tell the compiler to emit BTF debug information:
$ gcc -c -gbtf example-v0.c $ ls example-v0.o example-v0.o $
Note how we use the -gbtf
switch to GCC. This instructs the compiler to emit debug information in the BTF format.
Let’s confirm that GCC hasn’t emitted any DWARF debug information using the eu-readelf
command, from the elfutils project:
$ eu-readelf --debug-dump=info example-v0.o eu-readelf: cannot get debug context descriptor: No DWARF information found $
Note how the eu-readelf hasn’t found any debug information.
Now let’s use the bpftool
command to confirm that some type information in the BTF format was emitted by GCC:
$ bpftool btf dump file example-v0.o [1] STRUCT 'S' size=8 vlen=2 'a' type_id=2 bits_offset=0 'b' type_id=3 bits_offset=32 [2] INT 'int' size=4 bits_offset=0 nr_bits=32 encoding=SIGNED [3] INT 'char' size=1 bits_offset=0 nr_bits=8 encoding=SIGNED [4] FUNC_PROTO '(anon)' ret_type_id=2 vlen=1 's' type_id=5 [5] PTR '(anon)' type_id=1 [6] FUNC 'example_function' type_id=4 linkage=global $
Now we can use the abidw
from libabigail to serialize the ABI information constructed from the BTF in the binary:
$ /home/dodji/git/libabigail/master/build/tools/abidw --annotate example-v0.o <abi-corpus version='2.2' path='example-v0.o' architecture='elf-amd-x86_64'> <elf-function-symbols> <!-- example_function --> <elf-symbol name='example_function' type='func-type' binding='global-binding' visibility='default-visibility' is-defined='yes'/> </elf-function-symbols> <abi-instr address-size='64'> <!-- char --> <type-decl name='char' size-in-bits='8' id='type-id-1'/> <!-- int --> <type-decl name='int' size-in-bits='32' id='type-id-2'/> <!-- struct S --> <class-decl name='S' size-in-bits='64' is-struct='yes' visibility='default' id='type-id-3'> <data-member access='public' layout-offset-in-bits='0'> <!-- int S::a --> <var-decl name='a' type-id='type-id-2' visibility='default'/> </data-member> <data-member access='public' layout-offset-in-bits='32'> <!-- char S::b --> <var-decl name='b' type-id='type-id-1' visibility='default'/> </data-member> </class-decl> <!-- S* --> <pointer-type-def type-id='type-id-3' size-in-bits='64' id='type-id-4'/> <!-- int example_function(S*) --> <function-decl name='example_function' mangled-name='example_function' visibility='default' binding='global' size-in-bits='64' elf-symbol-id='example_function'> <!-- parameter of type 'S*' --> <parameter type-id='type-id-4' name='s'/> <!-- int --> <return type-id='type-id-2'/> </function-decl> <!-- int (S*) --> <function-type size-in-bits='64' id='type-id-5'> <!-- parameter of type 'S*' --> <parameter type-id='type-id-4' name='s'/> <!-- int --> <return type-id='type-id-2'/> </function-type> </abi-instr> </abi-corpus> $
Here we see that abidw
was able to instantiate the BTF front end, construct an intermediate representation of the ABI of the example-v0.c
program, and serialize it back into the ABIXML format.
Finally, let’s modify the example-v0.c
program to change its ABI and see what the abidiff
program tells us by looking at the BTF information:
$ cat -n example-v1.c 1 struct S 2 { 3 int a; 4 char b; 5 int c; 6 }; 7 8 int 9 example_function(struct S *s, 10 int b) 11 { 12 return s->a; 13 } $
For brevity, here is a diff of the change to the source code:
$ diff -u example-v0.c example-v1.c --- example-v0.c 2023-07-23 19:30:10.309346718 +0200 +++ example-v1.c 2023-07-23 19:28:13.467415606 +0200 @@ -2,10 +2,12 @@ { int a; char b; + int c; }; int -example_function(struct S *s) +example_function(struct S *s, + int b) { return s->a; } $
Let’s compile it and let abidiff
analyze the changes between example-v0.o
and example-v1.o
:
$ gcc -c -gbtf example-v1.c $ /home/dodji/git/libabigail/master/build/tools/abidiff example-v0.o example-v1.o Functions changes summary: 0 Removed, 1 Changed, 0 Added function Variables changes summary: 0 Removed, 0 Changed, 0 Added variable 1 function with some indirect sub-type change: [C] 'function int example_function(S*)' has some indirect sub-type changes: parameter 1 of type 'S*' has sub-type changes: in pointed to type 'struct S': type size changed from 64 to 96 (in bits) 1 data member insertion: 'int c', at offset 64 (in bits) parameter 2 of type 'int' was added $
Conclusion
As this article shows, the BTF front end enables the ABI analysis of binaries accompanied with type information in the BTF format, like the Linux Kernel, in the absence of type information in the DWARF format.
Because the type information in the BTF format is de-duplicated, the ABI analysis performed by libabigail should be much faster using the BTF front end than the default DWARF front end.
To learn more about the libabigail framework, engage with its development community either by joining the mailing list or via our IRC channel at irc://oftc.net#libabigail.
저자 소개
Dodji Seketeli is a member of the RHEL Platform Toolchain Organization at Red Hat. His main interests are currently around static analysis tools for Application Binary Interfaces of binaries in the ELF format.
채널별 검색
오토메이션
기술, 팀, 인프라를 위한 IT 자동화 최신 동향
인공지능
고객이 어디서나 AI 워크로드를 실행할 수 있도록 지원하는 플랫폼 업데이트
오픈 하이브리드 클라우드
하이브리드 클라우드로 더욱 유연한 미래를 구축하는 방법을 알아보세요
보안
환경과 기술 전반에 걸쳐 리스크를 감소하는 방법에 대한 최신 정보
엣지 컴퓨팅
엣지에서의 운영을 단순화하는 플랫폼 업데이트
인프라
세계적으로 인정받은 기업용 Linux 플랫폼에 대한 최신 정보
애플리케이션
복잡한 애플리케이션에 대한 솔루션 더 보기
오리지널 쇼
엔터프라이즈 기술 분야의 제작자와 리더가 전하는 흥미로운 스토리
제품
- Red Hat Enterprise Linux
- Red Hat OpenShift Enterprise
- Red Hat Ansible Automation Platform
- 클라우드 서비스
- 모든 제품 보기
툴
체험, 구매 & 영업
커뮤니케이션
Red Hat 소개
Red Hat은 Linux, 클라우드, 컨테이너, 쿠버네티스 등을 포함한 글로벌 엔터프라이즈 오픈소스 솔루션 공급업체입니다. Red Hat은 코어 데이터센터에서 네트워크 엣지에 이르기까지 다양한 플랫폼과 환경에서 기업의 업무 편의성을 높여 주는 강화된 기능의 솔루션을 제공합니다.