Introduction
A "secrets" object was added to Kubernetes v1.3 to provide a way to secure user credentials and other sensitive data. This data could be accessed at runtime for service authentication and other purposes. Building this data directly into images or passing it as environmental variables could compromise overall security.
Storing secret data in etcd was the initial solution. However, this initial design had some risks associated with it and several guidelines were issued to handle them: Restrict access to etcd to admin users, applications should exercise control over how secret data was being stored and transmitted across third party applications, and so forth. But implementing the recommendations in these guidelines do not automatically prevent organizations from accidentally exposing secrets.
Additional Security
To improve the security practices concerning secrets, encryption of secrets at rest will be introduced in the upcoming OpenShift 3.6.1 release. With this release, users will have the option to encrypt data before storing it to etcd. This adds an additional layer of security on top of:
- base64 encoded secret data
- secrets protected in transit via TLS
- full disk encryption of the volumes storing etcd data
The new encryption defends against malicious parties gaining access to data stored in ectd.
Configuring Encryption
In order to activate support for data encryption, an argument --experimental-encryption-provider-config should be passed to the Kubernetes API server:
Excerpt of master-config.yaml
kubernetesMasterConfig:
apiServerArguments:
experimental-encryption-provider-config:
- /path/to/encryption.config
After editing the file, restart OpenShift to enable secrets encryption.
Encrypting Data
Currently, three types of encryption providers are supported: aescbc, secretbox, and aesgcm. aescb is the recommended choice for encryption at rest. Each provider supports multiple keys and the keys are tried in order for decryption. If the provider is the first entry in the config file, the first key is used for encryption. If you want to encrypt/decrypt data, take a look at this document for more information.
Rotating Encryption Key
The encryption keys are stored on disk on all the api-server nodes. If aesgcmencryption is used, keys should be rotated every 2^32 writes.
Conclusion
When implementation and usage deviates from the API usage best practices, resulting in privilege escalation issues, this new feature for encrypting data at rest provides improved security.
저자 소개
유사한 검색 결과
Implementing best practices: Controlled network environment for Ray clusters in Red Hat OpenShift AI 3.0
Friday Five — December 12, 2025 | Red Hat
Technically Speaking | Platform engineering for AI agents
Technically Speaking | Driving healthcare discoveries with AI
채널별 검색
오토메이션
기술, 팀, 인프라를 위한 IT 자동화 최신 동향
인공지능
고객이 어디서나 AI 워크로드를 실행할 수 있도록 지원하는 플랫폼 업데이트
오픈 하이브리드 클라우드
하이브리드 클라우드로 더욱 유연한 미래를 구축하는 방법을 알아보세요
보안
환경과 기술 전반에 걸쳐 리스크를 감소하는 방법에 대한 최신 정보
엣지 컴퓨팅
엣지에서의 운영을 단순화하는 플랫폼 업데이트
인프라
세계적으로 인정받은 기업용 Linux 플랫폼에 대한 최신 정보
애플리케이션
복잡한 애플리케이션에 대한 솔루션 더 보기
가상화
온프레미스와 클라우드 환경에서 워크로드를 유연하게 운영하기 위한 엔터프라이즈 가상화의 미래