Welcome to Neural Magic's monthly vLLM roundup! We are excited to announce the agreement to be acquired by Red Hat. Joining forces with the industry's open source leader will enable us to bring our cutting-edge AI model optimization and accelerated inference technology to a worldwide audience of enterprises adopting open LLM capabilities.
Keep scrolling for exciting vLLM updates and opportunities to engage with the community!
Bi-Weekly vLLM Office Hours
Recent Recordings
vLLM Project Update: 2024 Retrospective and 2025 Roadmap | Watch Now
Exploring Machete, a Mixed-Input GEMM Kernel for Hopper GPUs | Watch Now
Disaggregated Prefill and KV Cache Storage in vLLM | Watch Now
SOTA Tool-Calling Implementation in vLLM | Watch Now
Take Your AI Performance to the Next Level
2:4 Sparse Llama: Smaller Models for Efficient GPU Inference
Large language models (LLMs) are approaching their limits in terms of traditional scaling, with billions of parameters added for relatively small accuracy gains and advanced quantization techniques squeezing out the last possible bits before accuracy plummets.
We Ran Over Half a Million Evaluations on Quantized LLMs: Here's What We Found
Quantizing models to lower precision formats, such as 8-bit or 4-bit, significantly reduces computational costs and accelerates inference.
Introducing Machete, a Mixed-Input GEMM Kernel Optimized for NVIDIA Hopper GPUs
Mixed-input quantization is a technique that processes weights and activations at different precisions in neural networks.
Research From Our Labs 🧪
1️⃣ "Give Me BF16 or Give Me Death"? Accuracy-Performance Trade-Offs in LLM Quantization | Read Here
2️⃣ PV-Tuning: Beyond Straight-Through Estimation for Extreme
LLM Compression | Read Here
3️⃣ QuaRot: Outlier-Free 4-Bit Inference in Rotated LLMs | Read Here
4️⃣ The Iterative Optimal Brain Surgeon: Faster Sparse Recovery by Leveraging Second-Order Information | Read Here
5️⃣ MicroAdam: Accurate Adaptive Optimization with Low Space Overhead and Provable Convergence | Read Here
vLLM has surpassed 32,000 stars! 🌟 Be sure to add your star and join the community. Thank you for your support.
Recurso
Introdução à IA empresarial: um guia para iniciantes
Sobre o autor
Saša Zelenović is a Principal Product Marketing Manager at Red Hat, joining in 2025 through the Neural Magic acquisition where he led as Head of Marketing. With a passion for developer-focused marketing, Sasa drives efforts to help developers compress models for inference and deploy them with vLLM. He co-hosts the bi-weekly vLLM Office Hours, a go-to spot for insights and community around all things vLLM.
Mais como este
A 5-step playbook for unified automation and AI
AI ambitions meet automation reality: The case for a unified automation platform
Technically Speaking | Platform engineering for AI agents
Technically Speaking | Driving healthcare discoveries with AI
Navegue por canal
Automação
Últimas novidades em automação de TI para empresas de tecnologia, equipes e ambientes
Inteligência artificial
Descubra as atualizações nas plataformas que proporcionam aos clientes executar suas cargas de trabalho de IA em qualquer ambiente
Nuvem híbrida aberta
Veja como construímos um futuro mais flexível com a nuvem híbrida
Segurança
Veja as últimas novidades sobre como reduzimos riscos em ambientes e tecnologias
Edge computing
Saiba quais são as atualizações nas plataformas que simplificam as operações na borda
Infraestrutura
Saiba o que há de mais recente na plataforma Linux empresarial líder mundial
Aplicações
Conheça nossas soluções desenvolvidas para ajudar você a superar os desafios mais complexos de aplicações
Virtualização
O futuro da virtualização empresarial para suas cargas de trabalho on-premise ou na nuvem