Having a grasp of common architectural patterns is essential to designing software architecture at scale. Using them saves not only time but also ensures a reliable implementation of your design. There’s no need to reinvent the wheel when there’s an architectural pattern available that applies to an architecture you’re developing.
The following is a brief overview of the Sharding architectural pattern.
Understanding the Sharding pattern
The Sharding pattern is when a datastore is separated from a single storage instance into multiple instances called shards. Data is then divided according to some form of sharing logic. Queries are executed against the shards. It’s up to the database technology implementing the shards to perform the queries in an optimized manner.
One type of sharding logic is when database administrators (DBAs) segment data according to values in a particular field in the database. An example of such separation is dividing data among the shards according to the first letters of the last name.
Another type of sharding separates data according to a segmentation logic that ensures that disk capacity is consumed equally among all instances.
Pros
- The sharding pattern is well suited for large, distributed enterprise applications.
- Sharding allows for the fast execution of a command or a query.
- Storage segmentation, which is a key feature of the sharding pattern, enables the physical infrastructure to scale in a controlled manner.
Cons
- The sharding pattern requires that DBAs have both specific domain expertise and experience with the best practices of the database technologies in play in order to manage the sharding segmentation effectively.
- Shards distributed over a large number of geolocations can be susceptible to performance degradation due to excessive network traffic.
- Some database technologies are better suited to the sharding pattern than others. Thus, you need to choose wisely.
- Added hardware means a higher total cost of ownership of the service.
Putting it all together
Separating data using the Sharding pattern is well suited to large distributed applications. Large enterprise applications depend on fast data access. Logically segmenting data according to a data table’s key or a database’s storage capabilities executes queries with a fine grain of precision. Searching for data according to shard is faster. Also, scaling becomes more efficient.
Sobre el autor
Bob Reselman is a nationally known software developer, system architect, industry analyst, and technical writer/journalist. Over a career that spans 30 years, Bob has worked for companies such as Gateway, Cap Gemini, The Los Angeles Weekly, Edmunds.com and the Academy of Recording Arts and Sciences, to name a few. He has held roles with significant responsibility, including but not limited to, Platform Architect (Consumer) at Gateway, Principal Consultant with Cap Gemini and CTO at the international trade finance company, ItFex.
Más como éste
Meet the latest Red Hat OpenShift Superheroes
Red Hat Learning Subscription Course: Skills for the future
Why Should You Write Technical Documentation? | Compiler
Tech Conferences 101 | Compiler
Navegar por canal
Automatización
Las últimas novedades en la automatización de la TI para los equipos, la tecnología y los entornos
Inteligencia artificial
Descubra las actualizaciones en las plataformas que permiten a los clientes ejecutar cargas de trabajo de inteligecia artificial en cualquier lugar
Nube híbrida abierta
Vea como construimos un futuro flexible con la nube híbrida
Seguridad
Vea las últimas novedades sobre cómo reducimos los riesgos en entornos y tecnologías
Edge computing
Conozca las actualizaciones en las plataformas que simplifican las operaciones en el edge
Infraestructura
Vea las últimas novedades sobre la plataforma Linux empresarial líder en el mundo
Aplicaciones
Conozca nuestras soluciones para abordar los desafíos más complejos de las aplicaciones
Virtualización
El futuro de la virtualización empresarial para tus cargas de trabajo locales o en la nube