블로그 구독

Red Hat has always been an advocate of growth at the intersection of open source and computing solutions–which is exactly where RISC-V can be found. RISC-V is one of those technologies where the future is both evident and inevitable. By integrating open source concepts with the hardware development process, it’s not hyperbole to say that RISC-V is disrupting the hardware industry.

Our excitement around the unique value RISC-V brings to the hardware ecosystem as an open and collaborative instruction set architecture (ISA) is nothing new. Red Hat has been providing Fedora on RISC-V for several years, collaborating with universities on interesting RISC-V based research projectswriting about RISC-V since at least 2018, working within RISC-V International particularly in the platforms & profiles working group and most recently joined the RISE Project as a founding member. We continue to identify new opportunities for RISC-V, especially within edge, artificial intelligence and next-generation infrastructure. As for the business value of RISC-V for enterprises at large, I wanted to share some takeaways from a keynote I gave at the recent RISC-V Summit in Santa Clara.

Far edge

Moving data from remote locations to a centralized compute fabric for processing can be prohibitively expensive and technically challenging. This becomes even more of a challenge if the data’s insights are vital to providing services back at the remote location, such as improving mean time to insight or reducing cost and latency. These challenges encourage enterprises to process data as close as possible to its source. A major key challenge involves developing the capabilities to deploy and maintain applications on use-case optimized hardware and far edge devices.

Additionally, the ability to orchestrate data collection, storage and analysis is becoming more complex. Increasingly, these capabilities are scattered across a wide variety of connected, partially connected and disconnected environments, with varying requirements to own and/or operate the related infrastructure. This is further compounded by having to meet geographic, regulatory and digital sovereignty constraints which preclude traditional approaches such as centralized data lakes.

We believe that RISC-V is very well suited to address these myriad challenges, from hardware flexibility and performance per watt to supporting a growing software ecosystem, both as accelerators in heterogeneous systems and as apps processors driving the workloads.

Artificial intelligence

Given global macroeconomic conditions, there is industry-wide interest in leveraging machine learning (ML) models to augment human developers and ops engineers. Layering these models into existing workflows are aimed at improving overall productivity, increasing operational reliability and faster time to development. As the role for ML expands, there is a need to deploy, maintain and enhance the security of those models in conjunction with the application development pipelines that use them.

RISC-V is emerging as a primary source for AI/ML acceleration in a number of heterogenous and homogenous solutions. While Red Hat is famously a Linux platform company rather than a developer of individual solutions, we see very strong value in understanding the solutions that our customers implement and work to support them in that journey. Thus, we feel it’s imperative that we develop support for RISC-V as accelerators as well as primary CPUs to meet our customers’ current and potential future needs.

Next-generation infrastructure

We’re also watching a revolution in next generation infrastructure, which is already a very quickly evolving area of technology. While we’re just now seeing ARM architectures taking a starring role in datacenters, we believe that RISC-V is not too far behind–and with far edge and many devices in the middle, RISC-V is already here in the marketplace.

Increasingly, the computational needs of applications require more than industry standard servers, whether in the data center or on the far edge. To address this dynamic, we’re integrating support into our platforms to more seamlessly integrate and run workloads across emerging, software defined, heterogeneous compute infrastructures, such as CXL, DPUs, and of course RISC-V.

To meet all of these opportunities, Red Hat is proud to be a founding member of the RISE Project supporting the growing RISC-V software ecosystem. RISE is a great way for organizations like Red Hat to help the broader ecosystem work upstream in the important projects and communities that will need to support RISC-V as it grows.

Red Hat has always been at the forefront supporting open technologies, and it is hardly possible for a computing architecture to be more open than RISC-V. We look forward to continuing our trajectory with this innovative architecture and the ecosystem around it.

저자 소개

Steve Watt is a Distinguished Engineer and leads the Red Hat Office of the CTO, which includes the Research, Emerging Technologies and Open Source Program Office organizations. Prior to joining Red Hat, Steve was the founder of the Hadoop Business and Hadoop Chief Technologist at HP and a Software Architect and Master Inventor at IBM Emerging Technologies. Prior to IBM, Steve worked for a number of consumer facing software startups in the USA and his native South Africa.

Read full bio

채널별 검색

automation icon


기술, 팀, 인프라를 위한 IT 자동화 최신 동향

AI icon


고객이 어디서나 AI 워크로드를 실행할 수 있도록 지원하는 플랫폼 업데이트

open hybrid cloud icon

오픈 하이브리드 클라우드

하이브리드 클라우드로 더욱 유연한 미래를 구축하는 방법을 알아보세요

security icon


환경과 기술 전반에 걸쳐 리스크를 감소하는 방법에 대한 최신 정보

edge icon

엣지 컴퓨팅

엣지에서의 운영을 단순화하는 플랫폼 업데이트

Infrastructure icon


세계적으로 인정받은 기업용 Linux 플랫폼에 대한 최신 정보

application development icon


복잡한 애플리케이션에 대한 솔루션 더 보기

Original series icon

오리지널 쇼

엔터프라이즈 기술 분야의 제작자와 리더가 전하는 흥미로운 스토리