Serverless is an event-driven computing paradigm where applications are allocated dynamically to serve a request or consume events. When the application is not in use, there are no computing resources allocated.
The serverless ecosystem offers a large number of runtimes, which start/stop/monitor software (e.g., Knative, Kubeless and many others). They come with different features, and they can trigger applications based on different kind of events (e.g., HTTP requests, messages, etc.).
Even if systemd cannot be considered a real serverless runtime, the socket activation feature provides a foundation for a serverless architecture.
Socket activation
The concept of systemd socket activation is that the socket is created by systemd, when a connection is received on such socket the application is activated. The application must be prepared to receive an already-initialized socket instead of creating a new one, for this reason not all applications can natively support socket activation.
To overcome this limitation, systemd provides a proxy supporting the socket activation and is capable of forwarding the connection to another socket.
The proxy
Recently (in version 209) systemd introduced a new tool named systemd-socket-proxyd
. This is a handy tool that can be used with applications not supporting socket activation.
systemd-socket-proxyd is a proxy supporting socket activation that can be used to bi-directionally forward traffic from a socket inherited from systemd to another unix or network socket.
From the main page of systemd-socket-proxyd
: One use of this tool is to provide socket activation support for services that do not natively support socket activation. On behalf of the service to activate, the proxy inherits the socket from systemd, accepts each client connection, opens a connection to a configured server for each client, and then bidirectionally forwards data between the two.
Since Podman does not support socket activation natively, systemd-socket-proxyd
can be used as a sort of wrapper to intercept the socket activation and spin up a container.
The idea
Let's use a system with IP address 172.16.18.70
as an example. On this system we want to activate a rootless container running an httpd server exposing the HTTP service on port 8080
.
Basically the flow is:
- systemd creates the TCP socket listening on 172.16.18.70:8080
using a .socket
unit.
- Once the TCP socket is hit by a connection, the corresponding .service
unit is activated. This service unit executes systemd-socket-proxyd
and requires another .service
unit that starts the container.

Why Podman?
Podman plays very well with systemd: here is a great video showing how podman can integrate with systemd to easily manage containerized services.
Podman can run rootless containers, and this post provides an overview of the advantages of rootless containers.
Let's do it
The following procedure has been tested on a Fedora 33 with systemd 246 and podman 2.2.1. The auto scale-down feature requires systemd 246, so it will not work on RHEL 8. However it's still worth understanding for future versions of RHEL.
As a first step we create the web server document root on the host and we put some dummy content:
$ mkdir -p ~/www-data ; echo "Hello World" > ~/www-data/index.html
At this point we can create the httpd
container. Please note that is exposing the port 8080
bound to the 127.0.0.1
address, and this is important to avoid conflicts with the systemd socket listening on the same port but on a different address.
$ podman pull registry.redhat.io/rhel8/httpd-24 $ podman create --name httpd -p 127.0.0.1:8080:8080 \ -v ~/www-data:/var/www/html/:Z registry.redhat.io/rhel8/httpd-24
In order to define a user service we must create the systemd user units directory. From now we will work inside this directory:
$ mkdir -p ~/.config/systemd/user && cd ~/.config/systemd/user
As anticipated, podman can create the systemd unit files to manage the container, let's do it:
$ podman generate systemd -f -n httpd --new
The previous command generated a systemd unit file named container-httpd.service
.
By default this unit file has an [Install]
section that we don't need because the unit file should not be installed but activated only on-demand.
So we should edit the file and completely remove the [Install]
section and all the contained directives.
Now we are ready to create the systemd socket, for that purpose we create an unit file named container-httpd-proxy.socket
:
$ cat << EOF > container-httpd-proxy.socket [Socket] ListenStream=172.16.18.70:8080 [Install] WantedBy=sockets.target EOF
Please note that the socket is listening on 127.16.18.70:8080
. Leaving just the port number without the address will lead to a conflict with the container needing to open the port 8080
.
At this point, we are ready to create the proxy service running systemd-socket-proxyd
:
$ cat << EOF > container-httpd-proxy.service [Unit] Requires=container-httpd.service After=container-httpd.service Requires=container-httpd-proxy.socket After=container-httpd-proxy.socket [Service] ExecStart=/usr/lib/systemd/systemd-socket-proxyd 127.0.0.1:8080 EOF
Since this will be the unit activated by the socket, it is important to name this unit the same as the socket.
As you can see, the systemd-socket-proxyd
forwards the connection to 127.0.0.1:8080
where the container is listening.
The other fundamental bit of this file is the Requires=container-httpd.service
which is triggering the podman container when the unit is activated.
Here we are now ready to activate the socket unit, which is the only unit file that must be enabled at the start-up:
$ systemctl --user daemon-reload $ systemctl --user enable --now container-httpd-proxy.socket $ # let's check if the socket is open: $ netstat -ltpn | grep 8080
Test it
After creating the systemd unit files and activating the socket, we should have a TCP socket listening on the 172.16.18.70:8080
address and the container httpd
should not be running.
Now sending an HTTP request to http://172.16.18.70:8080
should trigger the container start:
$ curl http://172.16.18.70:8080 Hello World $ podman ps CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES c0cbdafc54ae registry.redhat.io/rhel8/httpd-24 /usr/bin/run-http... 9 seconds ago Up 8 seconds ago 127.0.0.1:8080->8080/tcp httpd
Auto scale-down
With that, the container is started at the first request but is never terminated.
To avoid unneeded resource usage the container should be stopped when not in use.
To achieve that, there is a couple of useful features:
- systemd-socket-proxyd --exit-idle-time
: permits to define a timeout to terminate in case of no connections. This command switch has been introduced in version 246.
- adding StopWhenUnneeded=yes
to the container-httpd.service
unit will stop the container when the proxy unit is terminated.
Putting all together
Let’s have a look to all the systemd units:
$ systemctl --user cat --no-pager container-httpd-proxy.socket [Socket] ListenStream=172.16.18.70:8080 [Install] WantedBy=sockets.target
$ systemctl --user cat --no-pager container-httpd-proxy.service [Unit] Requires=container-httpd.service After=container-httpd.service Requires=container-httpd-proxy.socket After=container-httpd-proxy.socket [Service] ExecStart=/usr/lib/systemd/systemd-socket-proxyd --exit-idle-time=30s 127.0.0.1:8080
$ systemctl --user cat --no-pager container-httpd.service [Unit] Description=Podman container-httpd.service Documentation=man:podman-generate-systemd(1) Wants=network.target After=network-online.target StopWhenUnneeded=yes [Service] Environment=PODMAN_SYSTEMD_UNIT=%n Restart=on-failure ExecStartPre=/bin/rm -f %t/container-httpd.pid %t/container-httpd.ctr-id ExecStart=/usr/bin/podman run --conmon-pidfile %t/container-httpd.pid --cidfile %t/container-httpd.ctr-id --cgroups=no-conmon -d --replace --name httpd -p 127.0.0.1:8080:8080 -v ${HOME}/www-data:/var/www/html/:Z registry.redhat.io/rhel8/httpd-24 ExecStartPost=/bin/sleep 1 ExecStop=/usr/bin/podman stop --ignore --cidfile %t/container-httpd.ctr-id -t 10 ExecStopPost=/usr/bin/podman rm --ignore -f --cidfile %t/container-httpd.ctr-id PIDFile=%t/container-httpd.pid KillMode=none Type=forking
$ systemctl --user list-unit-files | grep container-httpd container-httpd-proxy.service static - container-httpd.service static - container-httpd-proxy.socket enabled disabled
Systemd opened the socket 172.16.18.70:8080
:
$ netstat -ltpn | grep 8080 tcp 0 0 172.16.18.70:8080 0.0.0.0:* LISTEN 12298/systemd
The `httpd
` container is not running:
$ podman ps CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
Let’s send an HTTP request:
$ curl http://172.16.18.70:8080 Hello World
The request has been answered and the httpd
container is started:
$ podman ps CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES 8487372aaadd registry.redhat.io/rhel8/httpd-24 /usr/bin/run-http... 7 seconds ago Up 6 seconds ago 127.0.0.1:8080->8080/tcp httpd
Let’s wait 30 seconds and check if the container is stopped:
$ sleep 30 && podman ps CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
As we can see the container is not running anymore. Sending another request will trigger a new start of the container:
$ curl http://172.16.18.70:8080 Hello World $ podman ps CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES ebede0c85103 registry.redhat.io/rhel8/httpd-24 /usr/bin/run-http... 4 seconds ago Up 3 seconds ago 127.0.0.1:8080->8080/tcp httpd
Conclusion
Systemd and Podman can work very well together and thanks to the socket activation when a container is not serving any request can be stopped without keeping resources allocated.
À propos de l'auteur
Pietro Bertera is a Senior Technical Account Manager working with Red Hat OpenShift. He is based in Italy.
Parcourir par canal
Automatisation
Les dernières nouveautés en matière d'automatisation informatique pour les technologies, les équipes et les environnements
Intelligence artificielle
Actualité sur les plateformes qui permettent aux clients d'exécuter des charges de travail d'IA sur tout type d'environnement
Cloud hybride ouvert
Découvrez comment créer un avenir flexible grâce au cloud hybride
Sécurité
Les dernières actualités sur la façon dont nous réduisons les risques dans tous les environnements et technologies
Edge computing
Actualité sur les plateformes qui simplifient les opérations en périphérie
Infrastructure
Les dernières nouveautés sur la plateforme Linux d'entreprise leader au monde
Applications
À l’intérieur de nos solutions aux défis d’application les plus difficiles
Programmes originaux
Histoires passionnantes de créateurs et de leaders de technologies d'entreprise
Produits
- Red Hat Enterprise Linux
- Red Hat OpenShift
- Red Hat Ansible Automation Platform
- Services cloud
- Voir tous les produits
Outils
- Formation et certification
- Mon compte
- Assistance client
- Ressources développeurs
- Rechercher un partenaire
- Red Hat Ecosystem Catalog
- Calculateur de valeur Red Hat
- Documentation
Essayer, acheter et vendre
Communication
- Contacter le service commercial
- Contactez notre service clientèle
- Contacter le service de formation
- Réseaux sociaux
À propos de Red Hat
Premier éditeur mondial de solutions Open Source pour les entreprises, nous fournissons des technologies Linux, cloud, de conteneurs et Kubernetes. Nous proposons des solutions stables qui aident les entreprises à jongler avec les divers environnements et plateformes, du cœur du datacenter à la périphérie du réseau.
Sélectionner une langue
Red Hat legal and privacy links
- À propos de Red Hat
- Carrières
- Événements
- Bureaux
- Contacter Red Hat
- Lire le blog Red Hat
- Diversité, équité et inclusion
- Cool Stuff Store
- Red Hat Summit