Incumbent banks should know they have to modernize their organization to compete in a world where customers want better and more personalized digital experiences. Eager to realize the cost-savings and increased revenue that can result from micro-targeting products and services, they can adopt next-generation technologies to transform their businesses to lead their market.
Digital leaders are focused on end-to-end customer experiences. Processes, policies, and procedures defined for branch networks are being reimagined to support new digital customer engagement. By modernizing the back office and business processes, banks have an opportunity to streamline, codify, and thereby automate - which, in turn, can reduce friction caused by manual checks and inconsistent policies. This can enable more seamless customer experiences and speedier customer service, with transparency into servicing while reducing operational costs.
Artificial Intelligence (AI) is one of the leading digital technologies that’s captured the attention of financial services firms. While a number of use cases have emerged, one at the top of the list is its ability to help detect financial crime.
With increasing stores of event data, banks are challenged to analyze it given the old ways of storing, then analyzing data. Modern technology can help discover and predict anomalies in data without storing it first. Ultimately the goal is to do real-time detection as triage to help minimize the number of false positives investigated.
According to an article from Deloitte, it is the cognitive capabilities associated with machine learning and natural language processing that are expected to make fraud detection models more robust - stronger and more accurate. As described by the Cognitive Computing Consortium, by their very nature cognitive systems can be distinguished from other forms of AI in their ability to adapt and learn from iterative human interaction.
Ultimately, it is the results that matter, and as highlighted in a previous post, reduction in false positives of 95 percent to 50 percent, along with a reduction of 27 percent in manual effort have been cited in a case using modern machine learning techniques - helping discover the undefined unknowns in data. However, it remains to be seen how much better over time these systems will become if AI and cognitive systems come together, with experts who can label data and teach the algorithms iteratively, like that of machine learning techniques in which an algorithm seeks to maximize a value based on rewards received for being right.
We are seeing financial firms marry operational efficiency efforts with AI/machine learning/cognitive computing - creating an additional layer of automated insight that is designed to optimize bank service processing. Part of that optimization can also come from hybrid cloud adoption, in which AI and machine learning models are available to operational systems in the data center and/or in a public cloud.
Native cloud adoption can include the use of Linux containers containing the libraries, dependencies, and files teams need, and these containers can be spun up and down on-demand. Just imagine: analysts can define the rules that automatically execute business decisions, informed by insights from embedded algorithms. Those algorithms, in turn, are part of the pre-approved library defined by AI and domain experts. All of this could be from a self-service environment that doesn’t require your technology organization to spend time provisioning the tools, the data, or the processing capacity.
Of course, bringing these kinds of capabilities into new products beyond operations is within the realm of open banking. More banks seem to be realizing the value of co-creating products and services to expand their market reach to help them achieve new value streams. Combining back office operational efficiency and embedded intelligence with data sharing via open banking APIs should further propel digital leadership in financial services.
These technologies hold much promise, and banks should understand they need to rethink their technology investments to include them. But knowing what they need to do and figuring out how to do it can be two different things. Banks will have to be sure to aim and hit the digital high points that best fit with their long-term business plans aligned to customer journeys at the core. Today’s dynamic customer environment should only continue, with new entrants and new ways of providing banking services. Perhaps the most prudent strategy is to plan for change.
These technologies have one thing in common. A successful return on technology environments that are mutable to business needs often depend on a willingness by the firm (and its leaders) to accept the cultural, process, and policy metamorphosis necessary to make them – and the larger digital transformations they can facilitate – work. This is a culture change for a traditional long-standing industry.
It’s going to be challenging to digitally transform banks, yet a path must be chosen and navigated, all while the banking landscape continues to change. For more on how technology can help this journey, visit www.redhat.com/fsi.
À propos de l'auteur
Described as a pioneer and one of the most influential people by CRMPower, Fiona McNeill has worked alongside some of the largest global organizations, helping them derive tangible benefit from the strategic application of technology to real-world business scenarios.
During her 25 year professional tenure, she has led teams, product strategy, marketing, and consulted across a wide range of industries, while at SAS, IBM Global Services, and others. McNeill co-authored Heuristics in Analytics with Dr. Carlos Andre Pinheiro, has previously published both in academic and business journals, and has served on the board of the Cognitive Computing Consortium. She received her M.A. in Quantitative Behavioral Geography from McMaster University and graduated with a B.Sc. in Bio-Physical Systems, University of Toronto.
Parcourir par canal
Automatisation
Les dernières nouveautés en matière d'automatisation informatique pour les technologies, les équipes et les environnements
Intelligence artificielle
Actualité sur les plateformes qui permettent aux clients d'exécuter des charges de travail d'IA sur tout type d'environnement
Cloud hybride ouvert
Découvrez comment créer un avenir flexible grâce au cloud hybride
Sécurité
Les dernières actualités sur la façon dont nous réduisons les risques dans tous les environnements et technologies
Edge computing
Actualité sur les plateformes qui simplifient les opérations en périphérie
Infrastructure
Les dernières nouveautés sur la plateforme Linux d'entreprise leader au monde
Applications
À l’intérieur de nos solutions aux défis d’application les plus difficiles
Programmes originaux
Histoires passionnantes de créateurs et de leaders de technologies d'entreprise
Produits
- Red Hat Enterprise Linux
- Red Hat OpenShift
- Red Hat Ansible Automation Platform
- Services cloud
- Voir tous les produits
Outils
- Formation et certification
- Mon compte
- Assistance client
- Ressources développeurs
- Rechercher un partenaire
- Red Hat Ecosystem Catalog
- Calculateur de valeur Red Hat
- Documentation
Essayer, acheter et vendre
Communication
- Contacter le service commercial
- Contactez notre service clientèle
- Contacter le service de formation
- Réseaux sociaux
À propos de Red Hat
Premier éditeur mondial de solutions Open Source pour les entreprises, nous fournissons des technologies Linux, cloud, de conteneurs et Kubernetes. Nous proposons des solutions stables qui aident les entreprises à jongler avec les divers environnements et plateformes, du cœur du datacenter à la périphérie du réseau.
Sélectionner une langue
Red Hat legal and privacy links
- À propos de Red Hat
- Carrières
- Événements
- Bureaux
- Contacter Red Hat
- Lire le blog Red Hat
- Diversité, équité et inclusion
- Cool Stuff Store
- Red Hat Summit