Ansible is an agentless IT automation tool that unravels the mystery of how work gets done. Many sysadmins run Ansible ad hoc commands or playbooks daily to handle their automated tasks. They rely on Ansible's default command-line interface (CLI) output to visualize and understand what happens after their command or playbook finishes running.
Since Ansible's CLI standard output is clean and lean, one option for tracking runtimes, getting metrics, understanding resource consumption, and gathering other information is to modify the output to include more details through using callback plugins. This article explores how to use two different Ansible callback plugins to profile system activity and maximum memory usage of tasks and full execution using cgroups.
There is a lot of ground to cover with this topic. This article sets the stage by defining the environment and necessary components. A second article will cover playbook execution tests using the callback plugins.
Setting up the test environment
This scenario needs only a managed node and a target machine. It uses the managed node (ServerA) to set the configuration files and playbooks. It runs the tests in the target machine (ServerB), where the httpd service is installed and configured to act as a test web server. Both ServerA and ServerB have the following configuration:
- CPU: 1 vCPU
- Memory: 1GB
- Disk: 10GB
- OS: RHEL 8.4
- Ansible version: 2.9.26
[ Register for our free Ansible essentials online course. ]
All commands are executed on the managed node. Start by creating an inventory file with just the target machine's hostname:
[servera]$ cat << EOF > hosts
[demo]
serverb
EOF
Next, create a simple ansible.cfg file with some access configuration information:
[servera]$ cat << EOF > ansible.cfg
[defaults]
inventory=hosts
remote_user=alexon
[privilege_escalation]
become=True
become_method=sudo
become_user=root
become_ask_pass=False
EOF
As I mentioned earlier, the target machine is a basic web server. Create two simple playbooks. The first, deploy-webserver.yml, installs, configures, and starts the httpd service on the target with a custom index.html page. The second, remove-webserver.yml, removes all of that configuration.
Here is the first playbook:
[servera]$ cat << EOF > deploy-webserver.yml
---
- name: Demo playbook to test callback plugin - Deployment
hosts: serverb
tasks:
- name: Install httpd package
dnf:
name: httpd
state: latest
- name: Start and enable httpd service
service:
name: httpd
enabled: true
state: started
- name: Create a custom index.html file
copy:
dest: /var/www/html/index.html
content: |
Enable SysAdmin Demo:
Ansible Profiling with Callback Plugin
Custom Web Page
EOF
And here is the second playbook:
[servera]$ cat << EOF > remove-webserver.yml
---
- name: Demo playbook to test callback plugin - Remove
hosts: serverb
tasks:
- name: Stop and disable httpd service
service:
name: httpd
enabled: false
state: stopped
- name: Remove httpd package
dnf:
name: httpd
state: absent
EOF
You should have the following four files in your demo directory:
[servera]$ ls -1
ansible.cfg
deploy-webserver.yml
hosts
remove-webserver.yml
Testing the environment
First, test communication with the target machine by pinging it through an Ansible ad-hoc command:
[servera]$ ansible -i hosts -m ping serverb
serverb | SUCCESS => {
"ansible_facts": {
"discovered_interpreter_python": "/usr/libexec/platform-python"
},
"changed": false,
"ping": "pong"
}
Run the playbooks to verify that they work as expected. First, run the deploy-webserver.yml playbook:
[servera]$ ansible-playbook deploy-webserver.yml
PLAY [Demo playbook to test callback plugin - Deployment] *******************************************************************************************
TASK [Gathering Facts] ******************************************************************************************************************************
ok: [serverb]
TASK [Install httpd package] ************************************************************************************************************************
changed: [serverb]
TASK [Start and enable httpd service] ***************************************************************************************************************
changed: [serverb]
TASK [Create a custom index.html file] **************************************************************************************************************
ok: [serverb]
PLAY RECAP ******************************************************************************************************************************************
serverb : ok=4 changed=2 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0
Success! What about the remove-webserver.yml playbook?
[servera]$ ansible-playbook remove-webserver.yml
PLAY [Demo playbook to test callback plugin - Remove] ***********************************************************************************************
TASK [Gathering Facts] ******************************************************************************************************************************
ok: [serverb]
TASK [Stop and disable httpd service] ***************************************************************************************************************
changed: [serverb]
TASK [Remove httpd package] ************************************************************************************************************************
changed: [serverb]
PLAY RECAP ******************************************************************************************************************************************
serverb : ok=3 changed=2 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0
It works like a charm. But how do you know answers to things like: How long does it take each task to run? How many resources (memory and CPU) were consumed? What was the playbooks' total runtime? And how much of the total resources were consumed from the target machine? These look like questions for the second article!
Wrapping up
In this article, I defined the issue of tracking runtimes, getting metrics, and consuming resources in Ansible's CLI output when running playbooks. I covered basic adjustments for both Ansible configuration files and playbooks. I also established the infrastructure you'll use in the next article in the series, which goes into the tests for profiling resources and executing tasks with Ansible callback plugins.
À propos de l'auteur
Alexon has been working as a Senior Technical Account Manager at Red Hat since 2018, working in the Customer Success organization focusing on Infrastructure and Management, Integration and Automation, Cloud Computing, and Storage Solutions. He is a part of the TAM Practices LATAM team based in São Paulo, Brazil, where his job is partnering with, advocating, trust-advising, and supporting customers in their success goals while making use of the complete portfolio. He also contributes to produce and enhance documentation, knowledge-base articles, blog posts, presentations, webinars, and workshops. He is a member of numerous communities in addition to the Sudoers, like Red Hat Academy and Red Hat Accelerators. When he’s not at work, he enjoys spending quality time with his family (wife, daughter, and cat) and participating in several volunteer jobs.
Plus de résultats similaires
A 5-step playbook for unified automation and AI
AI ambitions meet automation reality: The case for a unified automation platform
Technically Speaking | Taming AI agents with observability
You Can’t Automate Cultural Change | Code Comments
Parcourir par canal
Automatisation
Les dernières nouveautés en matière d'automatisation informatique pour les technologies, les équipes et les environnements
Intelligence artificielle
Actualité sur les plateformes qui permettent aux clients d'exécuter des charges de travail d'IA sur tout type d'environnement
Cloud hybride ouvert
Découvrez comment créer un avenir flexible grâce au cloud hybride
Sécurité
Les dernières actualités sur la façon dont nous réduisons les risques dans tous les environnements et technologies
Edge computing
Actualité sur les plateformes qui simplifient les opérations en périphérie
Infrastructure
Les dernières nouveautés sur la plateforme Linux d'entreprise leader au monde
Applications
À l’intérieur de nos solutions aux défis d’application les plus difficiles
Virtualisation
L'avenir de la virtualisation d'entreprise pour vos charges de travail sur site ou sur le cloud