Welcome to Neural Magic's monthly vLLM roundup! We are excited to announce the agreement to be acquired by Red Hat. Joining forces with the industry's open source leader will enable us to bring our cutting-edge AI model optimization and accelerated inference technology to a worldwide audience of enterprises adopting open LLM capabilities.

Keep scrolling for exciting vLLM updates and opportunities to engage with the community!

Bi-Weekly vLLM Office Hours

Recent Recordings

vLLM Project Update: 2024 Retrospective and 2025 Roadmap | Watch Now

Exploring Machete, a Mixed-Input GEMM Kernel for Hopper GPUs | Watch Now

Disaggregated Prefill and KV Cache Storage in vLLM | Watch Now

SOTA Tool-Calling Implementation in vLLM | Watch Now

Take Your AI Performance to the Next Level

2

2:4 Sparse Llama: Smaller Models for Efficient GPU Inference
Large language models (LLMs) are approaching their limits in terms of traditional scaling, with billions of parameters added for relatively small accuracy gains and advanced quantization techniques squeezing out the last possible bits before accuracy plummets.

Keep Reading

2

We Ran Over Half a Million Evaluations on Quantized LLMs: Here's What We Found
Quantizing models to lower precision formats, such as 8-bit or 4-bit, significantly reduces computational costs and accelerates inference.

Keep Reading

2

Introducing Machete, a Mixed-Input GEMM Kernel Optimized for NVIDIA Hopper GPUs
Mixed-input quantization is a technique that processes weights and activations at different precisions in neural networks.

Keep Reading

Research From Our Labs 🧪

1️⃣ "Give Me BF16 or Give Me Death"? Accuracy-Performance Trade-Offs in LLM Quantization | Read Here

2️⃣ PV-Tuning: Beyond Straight-Through Estimation for Extreme
LLM Compression | Read Here

3️⃣ QuaRot: Outlier-Free 4-Bit Inference in Rotated LLMs | Read Here

4️⃣ The Iterative Optimal Brain Surgeon: Faster Sparse Recovery by Leveraging Second-Order Information | Read Here

5️⃣ MicroAdam: Accurate Adaptive Optimization with Low Space Overhead and Provable Convergence | Read Here

vLLM has surpassed 32,000 stars! 🌟 Be sure to add your star and join the community. Thank you for your support.

Ressource

Se lancer avec l'IA en entreprise : guide pour les débutants

Consultez ce guide pour les débutants afin de savoir comment les solutions Red Hat OpenShift AI et Red Hat Enterprise Linux AI peuvent accélérer votre parcours d'adoption de l'IA.

À propos de l'auteur

Saša Zelenović is a Principal Product Marketing Manager at Red Hat, joining in 2025 through the Neural Magic acquisition where he led as Head of Marketing. With a passion for developer-focused marketing, Sasa drives efforts to help developers compress models for inference and deploy them with vLLM. He co-hosts the bi-weekly vLLM Office Hours, a go-to spot for insights and community around all things vLLM.

UI_Icon-Red_Hat-Close-A-Black-RGB

Parcourir par canal

automation icon

Automatisation

Les dernières nouveautés en matière d'automatisation informatique pour les technologies, les équipes et les environnements

AI icon

Intelligence artificielle

Actualité sur les plateformes qui permettent aux clients d'exécuter des charges de travail d'IA sur tout type d'environnement

open hybrid cloud icon

Cloud hybride ouvert

Découvrez comment créer un avenir flexible grâce au cloud hybride

security icon

Sécurité

Les dernières actualités sur la façon dont nous réduisons les risques dans tous les environnements et technologies

edge icon

Edge computing

Actualité sur les plateformes qui simplifient les opérations en périphérie

Infrastructure icon

Infrastructure

Les dernières nouveautés sur la plateforme Linux d'entreprise leader au monde

application development icon

Applications

À l’intérieur de nos solutions aux défis d’application les plus difficiles

Virtualization icon

Virtualisation

L'avenir de la virtualisation d'entreprise pour vos charges de travail sur site ou sur le cloud