In Part 1, we created a working BIND container with local data storage. We can make changes on the local system that will get picked up in the running container. In this part, we’ll explore how we can manage the service from the host with systemctl
.
In Part 1, we installed two OCI hooks, oci-register-machine
and oci-systemd-hook
. OCI hooks are executed either before the container process is executed (prestart) or after shut down (poststop). These two hooks provide the integration points to systemd on the host. We used machinectl
in the previous post to copy files out of our test container, but we didn’t look at what else this integration can do for us.
Using machinectl list
, we see what containers systemd knows about. The MACHINE field holds the machine-id created by oci-register-machine
from the container ID. We can use that ID with both machinectl
and systemctl
.
With machinectl status
we can see some interesting things about our container, like IP address, OS release info, and the systemd hierarchy running. Since this is from the host view, you’ll see the host PID for /sbin/init
not PID 1.
[root@rhel7-host bind]# machinectl status 47d2c93035cafb1174dedd924cfa4308 47d2c93035cafb1174dedd924cfa4308(47d2c93035cafb1174dedd924cfa4308) Since: Mon 2017-05-15 12:01:19 EDT; 3h 58min ago Leader: 2734 (systemd) Service: docker; class container Root: /var/lib/docker/devicemapper/mnt/5d897b599c6b003df74968f73ad56 Address: 172.17.0.2 fe80::42:acff:fe11:2 OS: Red Hat Enterprise Linux Server 7.3 (Maipo) Unit: docker-47d2c93035cafb1174dedd924cfa4308ebb8b924bc0b0b661f60ffe ├─2734 /sbin/init └─system.slice ├─named.service │ └─2788 /usr/sbin/named -u named ├─dbus.service │ └─2777 /bin/dbus-daemon --system --address=systemd: --nofo └─systemd-journald.service └─2766 /usr/lib/systemd/systemd-journald
CONTAINER SYSTEMD
We can also get status in the container via systemctl
on the host by specifying the -M
option. You can query the overall systemd status, the process status, and interact with the process as if it were on the host.
To see the internal container state and check for failed or queued jobs:
[root@rhel7-host bind]# systemctl -M 47d2c93035cafb1174dedd924cfa4308 status
To see the status of the named
service in container:
[root@rhel7-host bind]# systemctl -M 47d2c93035cafb1174dedd924cfa4308 status named
To see what actions are available to us via the unit file, you can use show
service. Let’s grep for Exec to see what’s available.
[root@rhel7-host bind]# systemctl -M 47d2c93035cafb1174dedd924cfa4308 show named | grep Exec ExecStart={ path=/usr/sbin/named ; argv[]=/usr/sbin/named -u named $OPTIONS ; ignore_errors=no ; start_time=[Mon 2017-05-15 12:01:20 EDT] ; stop_time=[Mon 2017-05-15 12:01:20 EDT] ; pid=26 ; code=exited ; status=0 } ExecReload={ path=/bin/sh ; argv[]=/bin/sh -c /usr/sbin/rndc reload > /dev/null 2>&1 || /bin/kill -HUP $MAINPID ; ignore_errors=no ; start_time=[n/a] ; stop_time=[n/a] ; pid=0 ; code=(null) ; status=0/0 } ExecStop={ path=/bin/sh ; argv[]=/bin/sh -c /usr/sbin/rndc stop > /dev/null 2>&1 || /bin/kill -TERM $MAINPID ; ignore_errors=no ; start_time=[n/a] ; stop_time=[n/a] ; pid=0 ; code=(null) ; status=0/0 }
The named
unit file exposes a start, stop, and reload action. We also can use reload-or-restart
and let systemd determine what to do instead of searching the show
output.
[root@rhel7-host bind]# systemctl -M 47d2c93035cafb1174dedd924cfa4308 reload-or-restart named [root@rhel7-host bind]# systemctl -M 47d2c93035cafb1174dedd924cfa4308 status named named.service - Berkeley Internet Name Domain (DNS) Loaded: loaded (/usr/lib/systemd/system/named.service; enabled; vendor preset: disabled) Active: active (running) since Mon 2017-05-15 12:01:20 EDT; 4h 32min ago Process: 54 ExecReload=/bin/sh -c /usr/sbin/rndc reload > /dev/null 2>&1 || /bin/kill -HUP $MAINPID (code=exited, status=0/SUCCESS) Process: 26 ExecStart=/usr/sbin/named -u named $OPTIONS (code=exited, status=0/SUCCESS) Process: 24 ExecStartPre=/bin/bash -c if [ ! "$DISABLE_ZONE_CHECKING" == "yes" ]; then /usr/sbin/named-checkconf -z /etc/named.conf; else echo "Checking of zone files is disabled"; fi (code=exited, status=0/SUCCESS) Main PID: 27 (khugepaged) CGroup: /system.slice/docker-47d2c93035cafb1174dedd924cfa4308ebb8b924bc0b0b661f60ffee3e4bf715.scope/system.slice/named.service └─2788 /usr/sbin/named -u named ‣ 27 [khugepaged]
Be sure to note, if you stop the service running in the container with systemctl
, that doesn’t stop the container. We’re directly manipulating the service in these commands not the container. You could use systemctl -M halt
to stop the container.
CREATING SYSTEMD UNIT
Now that we’ve looked at manually manipulating the service from systemctl
, the only thing left is to start the container when the host starts, so we’re never without DNS. We’ll create a simple unit file for the service, and then enable it on the host.
[root@rhel7-host ~]# vi named-container.service [Unit] Description=Containerized BIND service Requires=docker.service After=docker.service [Service] Restart=on-failure RestartSec=10 ExecStart=/usr/bin/docker start -a %p ExecStop=-/usr/bin/docker stop -t 2 %p [Install] WantedBy=multi-user.target
Since the name of the unit matches the name of the container we built, we use the %p
specifier to pass the right argument. In this case, that’s named-container
. If you wanted different names for the unit and container, you could replace the %p
with the name of the container. Copy the unit file to /etc/systemd/system
and we can manipulate the container like a service on the host.
Let’s use restart
so we know the container is managed by systemd and not already running from a previous step, then we can check the status of BIND inside the container.
[root@rhel7-host bind]# cp named-container.service /etc/systemd/system/ [root@rhel7-host bind]# systemctl enable named-container Created symlink from /etc/systemd/system/multi-user.target.wants/named-container.service to /etc/systemd/system/named-container.service. [root@rhel7-host bind]# systemctl restart named-container [root@rhel7-host bind]# systemctl status named-container named-container.service - Containerized BIND service Loaded: loaded (/etc/systemd/system/named-container.service; enabled; vendor preset: disabled) Active: active (running) since Wed 2017-05-10 16:45:44 EDT; 26s ago Main PID: 23455 (docker-current) Memory: 5.9M CGroup: /system.slice/named-container.service └─23455 /usr/bin/docker-current start -a named-container May 10 16:45:44 rhel7-host systemd[1]: Started Containerized BIND service. May 10 16:45:44 rhel7-host systemd[1]: Starting Containerized BIND service... [root@rhel7-host bind]# systemctl -M 47d2c93035cafb1174dedd924cfa4308 status named named.service - Berkeley Internet Name Domain (DNS) Loaded: loaded (/usr/lib/systemd/system/named.service; enabled; vendor preset: disabled) Active: active (running) since Wed 2017-05-10 16:44:52 EDT; 1min 49s ago Process: 26 ExecStart=/usr/sbin/named -u named $OPTIONS (code=exited, status=0/SUCCESS) Process: 24 ExecStartPre=/bin/bash -c if [ ! "$DISABLE_ZONE_CHECKING" == "yes" ]; then /usr/sbin/named-checkconf -z /etc/named.conf; else echo "Checking of zone files is disabled"; fi (code=exited, status=0/SUCCESS) Main PID: 27 (khugepaged) CGroup: /system.slice/docker-47d2c93035cafb1174dedd924cfa4308ebb8b924bc0b0b661f60ffee3e4bf715.scope/system.slice/named.service └─23438 /usr/sbin/named -u named ‣ 27 [khugepaged]
There we have it, a containerized BIND service that can be updated independently of any other services of the system, yet easily managed and updated from the host.
LOOKING AHEAD
This concept of a system service container isn’t quite the same as what some others are calling “system containers”. System containers are simply stand alone containers that provide services. The distinction isn’t between apps and OS containers, but if the application in the container benefits from distribution and orchestration. Typically, BIND doesn’t need to scale up and down based on usage, so it wouldn’t benefit from a full orchestration configuration.
System containers are something we think can be very useful. In the Container Catalog you'll find some supported examples, like etcd. This container uses the atomic
command found on the Red Hat Enterprise Linux Atomic Host to install and configure the service. These system containers are built somewhat differently than we did here, using runc
to launch the container. There are definite benefits to the approach and you can read more about the install and run process for etcd in the official documentation.
If you'd like to see how the upstream work is progressing on creating and managing these sorts of system containers, you can take a look at the Project Atomic repository.
Additional Resources:
GitHub repository for accompanying files: https://github.com/nzwulfin/named-container
Sull'autore
Altri risultati simili a questo
Ricerca per canale
Automazione
Novità sull'automazione IT di tecnologie, team e ambienti
Intelligenza artificiale
Aggiornamenti sulle piattaforme che consentono alle aziende di eseguire carichi di lavoro IA ovunque
Hybrid cloud open source
Scopri come affrontare il futuro in modo più agile grazie al cloud ibrido
Sicurezza
Le ultime novità sulle nostre soluzioni per ridurre i rischi nelle tecnologie e negli ambienti
Edge computing
Aggiornamenti sulle piattaforme che semplificano l'operatività edge
Infrastruttura
Le ultime novità sulla piattaforma Linux aziendale leader a livello mondiale
Applicazioni
Approfondimenti sulle nostre soluzioni alle sfide applicative più difficili
Serie originali
Raccontiamo le interessanti storie di leader e creatori di tecnologie pensate per le aziende
Prodotti
- Red Hat Enterprise Linux
- Red Hat OpenShift
- Red Hat Ansible Automation Platform
- Servizi cloud
- Scopri tutti i prodotti
Strumenti
- Formazione e certificazioni
- Il mio account
- Supporto clienti
- Risorse per sviluppatori
- Trova un partner
- Red Hat Ecosystem Catalog
- Calcola il valore delle soluzioni Red Hat
- Documentazione
Prova, acquista, vendi
Comunica
- Contatta l'ufficio vendite
- Contatta l'assistenza clienti
- Contatta un esperto della formazione
- Social media
Informazioni su Red Hat
Red Hat è leader mondiale nella fornitura di soluzioni open source per le aziende, tra cui Linux, Kubernetes, container e soluzioni cloud. Le nostre soluzioni open source, rese sicure per un uso aziendale, consentono di operare su più piattaforme e ambienti, dal datacenter centrale all'edge della rete.
Seleziona la tua lingua
Red Hat legal and privacy links
- Informazioni su Red Hat
- Opportunità di lavoro
- Eventi
- Sedi
- Contattaci
- Blog di Red Hat
- Diversità, equità e inclusione
- Cool Stuff Store
- Red Hat Summit