With the release of RHEL AI 1.3, we’re excited to introduce context aware chunking powered by the Docling project, a significant enhancement that expands the capabilities of taxonomy contributions, pushes the limits of synthetic data generation and offers enhanced document support (pdf and md). Through our collaboration with IBM Research and adoption of Docling, RHEL AI 1.3 now features a new data ingestion pipeline.
This update enables seamless integration of PDF documents, marking a shift from the previous Markdown-only support in qna.yaml and a new chunking strategy for documents, context aware chunking which allows better representation of different document elements.
Fig 1: Docling Integration in RHEL AI brings improved chunking strategy and enhanced document support
Fig 2: Zoomed in view of data ingestion pipeline using Docling
What’s new?
PDF support
Contributors can now reference PDF documents directly in taxonomy submissions alongside Markdown files. This update eliminates the need to manually convert PDFs to Markdown, streamlining the contribution process.
With the support of pdf documents, end users can bring their personal/enterprise documents directly for model customization for their use cases. In RHEL AI 1.4, more document types such as word, pptx, docx, html will be supported allowing users to support a broad range of use cases.
Docling adoption/context aware chunking
With the adoption of Docling, the #1 open source document paper on GitHub, we are introducing a new context aware chunking capability. It intelligently recognizes and processes different document elements – from text and tables to figures, lists and columns. This means more accurate extraction and better understanding of your documents' structure and meaning. This is an improvement over naive chunking being used in RHEL AI 1.2.
We've also enhanced our synthetic data generation (SDG) pipeline to leverage these new capabilities. We are continuing our collaboration with IBM Research to push the boundaries of context-aware document processing even further in future releases.
Docling parses PDFs and converts them into structured, context-aware chunks. The tool accurately represents critical semantic elements, including text, tables and images and enhances contextual understanding for better synthetic data generation.
Why this matters
The addition of PDF support overcomes the limitations of Markdown-only workflows, enabling contributors to include richer, more detailed documents in their submissions. Docling’s robust chunking capabilities ensure that PDFs are no longer a barrier to streamlined knowledge integration, making taxonomy contributions faster, easier, and more effective.
Naive chunking strategies often result in poor outputs for synthetic data generation and thereby finetuning of language models. Context aware chunking can result in reduced hallucinations involving complex document structures. This can facilitate seamless integration across various departments within an organization, each handling complex document representations. Another capability we are working on is hierarchical context aware chunking that captures additional meta data such as headings/captions for better context.
product trial
Red Hat Enterprise Linux AI | Versione di prova
Sugli autori
Aditi is a Technical Product Manager at Red Hat, working on Instruct Lab’s synthetic data generation capabilities. She is passionate about leveraging generative AI to create seamless, impactful end user experiences.
Aakanksha Duggal is a Senior Data Scientist at Red Hat, leading synthetic data generation efforts on Instructlab. Her work focuses on advancing scalable and impactful technologies in the field of AI.
Altri risultati simili a questo
Ricerca per canale
Automazione
Novità sull'automazione IT di tecnologie, team e ambienti
Intelligenza artificiale
Aggiornamenti sulle piattaforme che consentono alle aziende di eseguire carichi di lavoro IA ovunque
Hybrid cloud open source
Scopri come affrontare il futuro in modo più agile grazie al cloud ibrido
Sicurezza
Le ultime novità sulle nostre soluzioni per ridurre i rischi nelle tecnologie e negli ambienti
Edge computing
Aggiornamenti sulle piattaforme che semplificano l'operatività edge
Infrastruttura
Le ultime novità sulla piattaforma Linux aziendale leader a livello mondiale
Applicazioni
Approfondimenti sulle nostre soluzioni alle sfide applicative più difficili
Serie originali
Raccontiamo le interessanti storie di leader e creatori di tecnologie pensate per le aziende
Prodotti
- Red Hat Enterprise Linux
- Red Hat OpenShift
- Red Hat Ansible Automation Platform
- Servizi cloud
- Scopri tutti i prodotti
Strumenti
- Formazione e certificazioni
- Il mio account
- Supporto clienti
- Risorse per sviluppatori
- Trova un partner
- Red Hat Ecosystem Catalog
- Calcola il valore delle soluzioni Red Hat
- Documentazione
Prova, acquista, vendi
Comunica
- Contatta l'ufficio vendite
- Contatta l'assistenza clienti
- Contatta un esperto della formazione
- Social media
Informazioni su Red Hat
Red Hat è leader mondiale nella fornitura di soluzioni open source per le aziende, tra cui Linux, Kubernetes, container e soluzioni cloud. Le nostre soluzioni open source, rese sicure per un uso aziendale, consentono di operare su più piattaforme e ambienti, dal datacenter centrale all'edge della rete.
Seleziona la tua lingua
Red Hat legal and privacy links
- Informazioni su Red Hat
- Opportunità di lavoro
- Eventi
- Sedi
- Contattaci
- Blog di Red Hat
- Diversità, equità e inclusione
- Cool Stuff Store
- Red Hat Summit