This article was originally published on the Red Hat Customer Portal. The information may no longer be current.
The Fedora Engineering Steering Committee maintains a conservative list of packages that must be built using security features of GCC. Packages not on this list have these security features enabled at the packagers' descretion. There is not currently a consensus in the community as to when security hardened binaries are necessary. As a result the use of security hardened binaries can be a controversial topic. Most arguments can be reduced to whether the security benefit outweighs the performance overhead involved in using the feature.
Position Independent Executables (PIE) are an output of the hardened package build process. A PIE binary and all of its dependencies are loaded into random locations within virtual memory each time the application is executed. This makes Return Oriented Programming (ROP) attacks much more difficult to execute reliably. These blog posts are designed to showcase the results of a study I did recently which looked at the effect of building applications using PIE. In the study I investigated the overhead incurred in the loader during program startup with the aim to help distributions make better security decisions based on a technical analysis. The focus on program startup was chiefly to examine the place where PIE has the largest performance impact. The performance post process execution is largely comparable to standard Dynamic Shared Objects (DSOs) on x86_64 machines depending on how well the program and shared libraries have been designed. As this is a security blog I am biased towards functionality that increases security. However, in the tests that I performed, the start time of a PIE application and a regular application were comparable.
One of the more interesting things for me personally whilst doing this work was looking at how compiling with PIE enabled affects the resultant binary. Consider the following "Hello World" program:
#include "not/stdio.h" char message[] = "Hello World"; int main(int argc, char *argv[], char *envp[]) { puts(message); return 0; }
To reduce other influences, I used my own implementation of the standard library functions during compilation:
$ cc -nostdlib -nodefaultlibs -I. -o static-example os/syscall.x86_64.s os/start.x86_64.s not/strlen.c not/puts.c main.c $ size --format=sysv static-example static-example : section size addr .text 420 4194536 .rodata 2 4194956 .eh_frame 280 4194960 .data 12 6292392 .comment 44 0 Total 758
The ELF binary that is produced by this build has no dependencies on libc or the loader in order to run. This means that it can be loaded into memory and run without depending on the linker to find and bind dynamically with dependencies. This makes sharing and reusing routines difficult, however. The common solution to this problem is to create a shared library:
$ cc -fpic -shared -I. -nostdlib -nodefaultlibs -o libnotc.so os/syscall.x86_64.s os/syscall.c not/strlen.c not/puts.c
The next step is to recompile the main binary indicating that some symbol definitions exist within an external shared library:
$ cc -nostdlib -nodefaultlibs -I. -o dynamic-example os/start.x86_64.s main.c -L. -lnotc
The size of the resultant binary has a smaller .text section as that code is contained within the shared library libnotc.so. There are some other significant differences:
$ size --format=sysv dynamic-example dynamic-example : section size addr .interp 28 4194816 .note.gnu.build-id 36 4194844 .gnu.hash 48 4194880 .dynsym 144 4194928 .dynstr 46 4195072 .rela.plt 48 4195120 .plt 48 4195168 .text 56 4195216 .eh_frame_hdr 28 4195272 .eh_frame 96 4195304 .dynamic 272 6292552 .got.plt 40 6292824 .data 12 6292864 .comment 44 0 Total 946
In order for the program to execute correctly the ELF binary needs to be constructed in such a way that it allows the loader to resolve symbols at runtime. As the address of the symbol in memory is not a part of the main binary the loader adds a level of indirection in the procedure linkage table (the .plt section). Instead of calling puts() directly, the .plt section contains a special entry that points to the loader. The loader then has to resolve the actual address of the function. Once it has done that it updates an entry in the Global Offset Table (GOT). Subsequent calls to the same routine are made by jumps from the GOT entry.
A standard ELF binary is typically loaded into the the same base address in virtual memory each time it is executed. The linker takes advantage of this in non-relocatable code by jumping to absolute addresses of symbols. This turns out to have a slight performance benefit as it is quicker to jump to an absolute address than using relative addressing. This is especially true for i386 applications as another register is required for this process.
To see the difference between the dynamic and PIE applications we need to recompile the example program as a PIE. This simply requires the addition of the -fpic -pie flags to what we had previously:
$ cc -fpic -pie -nostdlib -nodefaultlibs -I. -o pie-example os/start.x86_64.s main.c -L. -lnotc $ size --format=sysv pie-example pie-example : section size addr .interp 28 512 .note.gnu.build-id 36 540 .gnu.hash 52 576 .dynsym 192 632 .dynstr 54 824 .rela.dyn 24 880 .rela.plt 48 904 .plt 48 960 .text 61 1008 .eh_frame_hdr 28 1072 .eh_frame 96 1104 .dynamic 320 2098352 .got 8 2098672 .got.plt 40 2098680 .data 12 2098720 .comment 44 0 Total 1091
Note that the address listed by the size command for each of the ELF sections is a relative address, whilst the address listed for the dynamic-example uses an absolute location. This is necessary because the program and all of its dependencies will be loaded into random locations in virtual memory upon execution. This is inclusive of prelinked libraries, and as such serves as an effective exploit mitigation technology for attacks that rely on returning to known addresses of standard system libraries. The overhead that is incurred by this defense mechanism and ways in which the number of relative relocations can be reduced will be covered in the next post of this series.
저자 소개
Red Hat is the world’s leading provider of enterprise open source software solutions, using a community-powered approach to deliver reliable and high-performing Linux, hybrid cloud, container, and Kubernetes technologies.
Red Hat helps customers integrate new and existing IT applications, develop cloud-native applications, standardize on our industry-leading operating system, and automate, secure, and manage complex environments. Award-winning support, training, and consulting services make Red Hat a trusted adviser to the Fortune 500. As a strategic partner to cloud providers, system integrators, application vendors, customers, and open source communities, Red Hat can help organizations prepare for the digital future.
유사한 검색 결과
채널별 검색
오토메이션
기술, 팀, 인프라를 위한 IT 자동화 최신 동향
인공지능
고객이 어디서나 AI 워크로드를 실행할 수 있도록 지원하는 플랫폼 업데이트
오픈 하이브리드 클라우드
하이브리드 클라우드로 더욱 유연한 미래를 구축하는 방법을 알아보세요
보안
환경과 기술 전반에 걸쳐 리스크를 감소하는 방법에 대한 최신 정보
엣지 컴퓨팅
엣지에서의 운영을 단순화하는 플랫폼 업데이트
인프라
세계적으로 인정받은 기업용 Linux 플랫폼에 대한 최신 정보
애플리케이션
복잡한 애플리케이션에 대한 솔루션 더 보기
오리지널 쇼
엔터프라이즈 기술 분야의 제작자와 리더가 전하는 흥미로운 스토리
제품
- Red Hat Enterprise Linux
- Red Hat OpenShift Enterprise
- Red Hat Ansible Automation Platform
- 클라우드 서비스
- 모든 제품 보기
툴
체험, 구매 & 영업
커뮤니케이션
Red Hat 소개
Red Hat은 Linux, 클라우드, 컨테이너, 쿠버네티스 등을 포함한 글로벌 엔터프라이즈 오픈소스 솔루션 공급업체입니다. Red Hat은 코어 데이터센터에서 네트워크 엣지에 이르기까지 다양한 플랫폼과 환경에서 기업의 업무 편의성을 높여 주는 강화된 기능의 솔루션을 제공합니다.