In a time where the rules of Enterprise IT are constantly changing and every day there seems to be a new app born in the cloud, we must not forget to ask ourselves what are the challenges we face with these changes and rapid app development. What do we need to do to secure the horizon? What technology bridges are still waiting to be built in order to get us where we want to be in term of service level and securing cloud workload availability.
The Hybrid Cloud Reality Check
While the cloud growth rate continues to rise rapidly, a balance between on-premise and cloud has become the reality.
As organizations would like to maintain a significant amount of their IT facilities at their sites, they also require new capabilities to allow them to address issues such as automated provisioning & hybrid management, when they look to build enterprise private clouds which combine their on-site resources with hosted private or public cloud resources. One of these capabilities is the need to provide business continuity and service availability in case of disasters which can lead to a complete loss of a data center such as floods, tornadoes, hurricanes, fires, etc.
Building the Disaster Recovery Bridges
Preparing for the worst case scenario means providing the ability to recover the technology infrastructure when a disaster occurs. This requires geographic distribution, where data written by an application is replicated to the data center which will be used for recovery. When we look at OpenStack, we find that it is still immature in this respect. As an emerging IaaS platform that is seeing more and more enterprise use, we need OpenStack to evolve to more easily support disaster recovery (DR).
We believe OpenStack should provide a consistent mechanism to abstract the DR support built into many enterprise systems, and higher level automation, and it should be able to easily configure these mechanisms into a DR solution appropriate for a workload.
Disaster Recovery (DR) for OpenStack is an umbrella topic that describes what needs to be done for applications and services (generally referred to as workload) running in an OpenStack cloud to survive a large-scale disaster.
Providing DR for a workload is a complex task involving infrastructure, software and an understanding the workload. To enable recovery following a disaster, the administrator needs to execute a complex set of provisioning operations that will mimic the day-to-day setup in a different environment.
Enabling DR for OpenStack hosted workloads requires enablement (APIs) in OpenStack components (e.g., Cinder) and tools which may be outside of OpenStack (e.g., scripts) to invoke, orchestrate and leverage the component specific APIs.
Goal
The goal is to provide a mechanism to mark and protect from disaster applications and services (a set of OpenStack entities) also referred to as a hosted workload. In this context the cloud is the equivalent of the physical hardware. The target of the disaster recovery is not recovering the hardware, but the applications, services and their data.
A separate recovery mechanism should address making the primary cloud available to run workloads following a disaster. The disaster recovery mechanism for applications and services can handle the fail-back to the primary cloud.
Examples
- Application service running on customer cloud and protected by recovery on hosted cloud.
- Application service running on customer cloud in data center #1 and protected by recovery on customer data center #2.
The plan is to provide a solution for both the born-in-the-cloud applications that were “Design for Failure” that are stateless in nature, as well as traditional applications that require storage and statefulness.
Disaster Recovery should include support for:
- Capturing the metadata of the cloud management stack, relevant for the protected workloads/resources: either as point-in-time snapshots of the metadata, or as continuous replication of the metadata.
- Making available the VM images needed to run the hosted workload on the target cloud.
- Replication of the workload data using storage replication, application level replication, or backup/restore.
The Road to Ice-House goes through Hong Kong...The DRaaS is a new initiative led by Red Hat & IBM Research to design Disaster Recovery as a Service for OpenStack
The plan calls for the architecture to be open and allow vendor products or products enablement to be integrated with the DRaaS using plug-ins and API's.
Join at the Related sessions in IceHouse summit:
- Survivingtheworst: AvisionforOpenStackdisasterrecovery - November 7, 9:50am
- Cinder Design Summit session on Storage Replication: http://summit.openstack.org/cfp/details/69
- The DRaaS wiki page can be found at: https://wiki.openstack.org/wiki/DisasterRecovery
By: Sean Cohen, Sr. Technical Product Manager, Red Hat
October 31, 2013
저자 소개
채널별 검색
오토메이션
기술, 팀, 인프라를 위한 IT 자동화 최신 동향
인공지능
고객이 어디서나 AI 워크로드를 실행할 수 있도록 지원하는 플랫폼 업데이트
오픈 하이브리드 클라우드
하이브리드 클라우드로 더욱 유연한 미래를 구축하는 방법을 알아보세요
보안
환경과 기술 전반에 걸쳐 리스크를 감소하는 방법에 대한 최신 정보
엣지 컴퓨팅
엣지에서의 운영을 단순화하는 플랫폼 업데이트
인프라
세계적으로 인정받은 기업용 Linux 플랫폼에 대한 최신 정보
애플리케이션
복잡한 애플리케이션에 대한 솔루션 더 보기
오리지널 쇼
엔터프라이즈 기술 분야의 제작자와 리더가 전하는 흥미로운 스토리
제품
- Red Hat Enterprise Linux
- Red Hat OpenShift Enterprise
- Red Hat Ansible Automation Platform
- 클라우드 서비스
- 모든 제품 보기
툴
체험, 구매 & 영업
커뮤니케이션
Red Hat 소개
Red Hat은 Linux, 클라우드, 컨테이너, 쿠버네티스 등을 포함한 글로벌 엔터프라이즈 오픈소스 솔루션 공급업체입니다. Red Hat은 코어 데이터센터에서 네트워크 엣지에 이르기까지 다양한 플랫폼과 환경에서 기업의 업무 편의성을 높여 주는 강화된 기능의 솔루션을 제공합니다.