Jump to section

Gli scenari di utilizzo di AI e ML

Copia URL

Automazione rapida con l'intelligenza artificiale

Leggendo l'ebook potrai scoprire come Red Hat® Ansible® Lightspeed utilizza IBM Watsonx Code Assistant per consentirti di trasformare le tue iniziative di automazione in codice per Red Hat Ansible Automation Platform, con l'aiuto di prompt basati sul linguaggio naturale.

In genere con l'espressione intelligenza artificiale (IA), in inglese artificial intelligence (AI), si intendono processi e algoritmi in grado di simulare l'intelligenza umana e capaci di imitare funzioni cognitive quali intuizione, apprendimento e risoluzione dei problemi. Il machine learning (ML) e il deep learning (DL) sono sotto categorie dell'intelligenza artificiale che utilizzano gli algoritmi per identificare degli schemi nei dati e utilizzarli per eseguire analisi predittive. L'obiettivo del machine learning è consentire all'essere umano di interpretare i dati con maggiore rapidità e precisione di quanto sarebbe in grado di fare da solo.

Le tecnologie di AI/ML sono ormai largamente diffuse in svariati settori e ambiti aziendali e stanno rapidamente trasformando il modo in cui le aziende operano. Analizzare i processi e carichi di lavoro della propria azienda serve a comprendere i vantaggi specifici che l'AI/ML può offrire e a superare le sfide che caratterizzano determinati scenari di utilizzo.

Sempre più spesso si ricorre all'AI/ML per semplificare, migliorare e aumentare la scalabilità delle funzioni aziendali. Di seguito alcuni esempi:

  • Dati e analisi. L'AI/ML automatizza l'immissione, lo storage e la sicurezza dei dati, oltre a generare analisi predittive sul business. 
  • Assistenza clienti. I chatbot e i sistemi di classificazione delle chiamate utilizzano l'elaborazione del linguaggio naturale (NLP) per soddisfare le richieste dei clienti più rapidamente e inviare quelle più complesse ai canali giusti. 
  • Operazioni. L'automazione robotica dei processi (RPA) impiega robot software per eseguire attività ripetitive prima svolte da dipendenti umani. In combinazione con l'intelligenza artificiale, questa tecnologia è in grado di analizzare set di dati non strutturati con una velocità e una precisione che i processi manuali non possono eguagliare.
  • Marketing e vendite. Grazie agli algoritmi di deep learning gli addetti al marketing possono svolgere analisi sui consumatori per applicare strategie mirate e personalizzare le campagne pubblicitarie. Inoltre, i team commerciali possono utilizzare l'intelligenza artificiale per elaborare le informazioni e individuare rapidamente i potenziali clienti. 
  • Risorse umane. I bot addestrati su modelli di IA di base sono utili per lo screening dei CV durante il processo di selezione del personale. Inoltre, è possibile utilizzare le reti neurali artificiali per raccogliere e analizzare i sondaggi sulla soddisfazione dei dipendenti e implementare i cambiamenti suggeriti più rapidamente. 

Quando si adottano queste soluzioni e altre, è importante prevedere e limitare le principali criticità legate all'AI/ML, come la presenza di bias o di sistemi di IA a "scatola nera". Questi difetti possono avere conseguenze importanti soprattutto in settori regolamentati come la sanità, la giustizia penale o il settore finanziario. Perciò le aziende che puntano su programmi di AI/ML per migliorare la produttività e le prestazioni devono assicurarsi di attuare strategie volte a ridurre i bias e a incrementare la trasparenza. Per farlo, sono necessari innanzitutto frequenti riaddestramenti e manutenzioni, oltre a processi di progettazione inclusivi e una maggiore attenzione alla diversità di rappresentazione all'interno dei dati raccolti.

Top considerations for building a production-ready AI/ML environment

EBOOK

Considerazioni essenziali per la creazione di un ambiente di AI e ML production ready.

I progressi nel campo dell'intelligenza artificiale hanno un impatto significativo sulla cura dei pazienti perché permettono al personale medico di diagnosticare le malattie e fornire un piano terapeutico in maniera più accurata. Di seguito alcuni modi in cui l'intelligenza artificiale nel settore sanitario si dimostra un'importante risorsa per pazienti, prestatori di servizi sanitari e amministratori:

  • Diagnosi rapide. Gli algoritmi di IA e gli strumenti di analisi predittiva in tempo reale sono utilizzati per generare diagnosi più velocemente in modo da garantire ai pazienti cure tempestive. 
  • Accesso allargato alle offerte sanitarie. I sistemi di diagnosi assistiti da IA aumentano il numero di pazienti fruitori dei servizi. Ad esempio, la radiologia o l'imaging biomedico assistiti da IA permettono a un numero maggiore di professionisti di interpretare gli ultrasuoni e contribuiscono a ridurre i rallentamenti causati dalla mancanza di specialisti e ad aumentare il numero di pazienti sottoposto a tali esami.
  • Sviluppo di farmaci e ricerca clinica. Gli strumenti di intelligenza artificiale computazionale sono in grado di migliorare o persino sostituire gli approcci "trial and error" utilizzati per lo sviluppo di farmaci e per la ricerca clinica e forniscono modelli più rapidi ed efficienti per monitorare l'intero processo. 

Le tecnologie di AI/ML vengono applicate sempre più spesso nel settore delle telecomunicazioni per svolgere diversi compiti, come ottimizzare le prestazioni della rete 5G e migliorare la qualità dei prodotti e dei servizi. Le applicazioni principali sono: 

  • Qualità del servizio. L'intelligenza artificiale consente di ottimizzare le prestazioni della rete perché è in grado di analizzare i dati raccolti da un provider di telecomunicazioni per rilevare i volumi di traffico, i rallentamenti e le interruzioni, e utilizzare questi dati per suggerire le azioni necessarie.  
  • Miglioramenti audio/video. L'elaborazione del linguaggio naturale e la visione artificiale permettono di migliorare la qualità delle chiamate ottimizzando la nitidezza delle immagini e la chiarezza della voce. 
  • Prevenire la perdita di clienti. Le tecnologie di riconoscimento vocale sono in grado di svolgere sentiment analysis sulle chiamate con clienti effettivi e potenziali per prevedere le fuoriuscite di clienti. Questo scenario di utilizzo non riguarda solo il settore delle telecomunicazioni. 

L'automazione intelligente sta trasformando il volto del settore manifatturiero introducendo nuove modalità di produzione, stoccaggio e trasporto.

  • Robot. I robot industriali vengono utilizzati in stabilimenti e centri manifatturieri per svolgere attività ripetitive e pericolose al posto dei dipendenti umani, come lo smistamento dei pacchetti e la gestione dei macchinari pesanti. In questo modo si riduce il rischio di errore umano.
  • Gestione della catena di distribuzione. L'apprendimento automatico è in grado di esaminare la logistica della catena di distribuzione e di gestire l'inventario per razionalizzare spedizioni e stoccaggio.
  • Analitica industriale. L'analitica industriale si basa su algoritmi di AI/ML con cui è possibile esaminare le prestazioni produttive, rilevare eventuali ostacoli e introdurre flussi di lavoro più efficienti.

L'intelligenza artificiale e il machine learning supportano gli enti governativi di tutto il mondo nello svolgimento delle loro funzioni e sono impiegati nell'interesse della collettività. 

  • Servizi pubblici migliorati. Gli strumenti di AI/ML sono in grado di acquisire i dati sull'utilizzo e sull'efficacia dei servizi pubblici, come trasporti, servizi igienico-sanitari e servizi sociali, e utilizzare tali dati per guidare lo sviluppo di nuove offerte e migliorare quelle esistenti. 
  • Gestione dei dati. L'elaborazione del linguaggio naturale è utile per organizzare e gestire i documenti pubblici perché riduce in maniera significativa il tempo e lo sforzo necessari per interpretare i dati qualitativi. Inoltre, le soluzioni di sicurezza informatica basate sull'intelligenza artificiale aiutano a ridurre l'esposizione alle minacce e velocizzano la risposta agli incidenti. 
  • Politica pubblica basata sui dati. Le capacità predittive dell'intelligenza artificiale e del machine learning sono in grado di guidare la politica pubblica grazie a previsioni basate sui dati e soluzioni basate sulle evidenze. 

Interagiamo con sistemi di AI/ML ogni volta che acquistiamo su siti di ecommerce. Le applicazioni principali sono:

  • Suggerimenti personalizzati. I sistemi di AI/ML monitorano il comportamento online dei clienti e utilizzano le informazioni acquisite per generare suggerimenti personalizzati tramite pubblicità digitali o interazioni sul sito. 
  • Chatbot. I chatbot vengono impiegati per migliorare l'esperienza dei clienti, ma possono anche fungere da addetti alle vendite automatizzati. Utilizzano l'elaborazione del linguaggio naturale per comprendere le esigenze degli utenti e aiutarli a trovare ciò che cercano. 
  • Cassa automatica. Alcune aziende utilizzano l'intelligenza artificiale per snellire il funzionamento delle casse automatiche grazie a sistemi che scansionano i prodotti e addebitano ai clienti l'importo corretto.

Con la diffusione dei veicoli automatizzati e delle autovetture elettriche è aumentato il bisogno di soluzioni innovative che permettano alle persone di raggiungere in sicurezza la loro destinazione.  

  • Percezione dell'ambiente e guida assistita. Gli strumenti di visione artificiale, come rilevatori dell'angolo cieco o sistemi di frenata intelligente, aiutano i conducenti a rilevare e interagire con gli oggetti circostanti, come gli altri veicoli, i pedoni o eventuali ostacoli. 
  • Autovetture a guida autonoma. Le tecnologie di AI/ML sono essenziali per garantire la sicurezza dei conducenti e di coloro che li circondano. Sono alla base dei sistemi di regolazione della velocità adattivi, di rilevamento della corsia e di frenata automatica. 
  • Manutenzione predittiva. Gli algoritmi di machine learning raccolgono i dati dei veicoli e li analizzano per prevedere i componenti che saranno maggiormente soggetti a usura o guasti e consigliano i corretti interventi di manutenzione per evitare problemi. 

Le tecnologie di NLP come ChatGPT hanno trovato grande diffusione nell'ambito della ricerca accademica e delle stesura di articoli scientifici, ma l'applicazione dell'AI/ML nel campo dell'istruzione non si limita a questo.

  • Progettazione intelligente dei corsi. L'intelligenza artificiale generativa permette di raccogliere tutti gli elementi necessari e organizzarli in un corso. È in grado anche di generare materiali didattici e compiti a casa. 
  • Ricerca assistita. Quando si conducono ricerche, gli strumenti di IA possono analizzare Internet e i database alla ricerca di materiali didattici pertinenti ed estrarre aree di interesse specifiche, fungendo da veri e propri assistenti virtuali.  
  • Tutoraggio. L'AI/ML è in grado di creare materiali di studio e di verifica delle conoscenze personalizzati per gli studenti che necessitano di tutoraggio supplementare. 

Le moderne aziende di servizi finanziari utilizzano l'AI/ML per sviluppare applicazioni che generino risultati misurabili, come una maggiore soddisfazione dei clienti, l'offerta di servizi diversificati e una maggiore automazione aziendale. 

  • Rilevamento delle frodi. Gli istituti bancari utilizzano il machine learning per rilevare transazioni non autorizzate o pericolose e avvisare i clienti in tempo reale. La biometria vocale, tecnologia che identifica le peculiarità univoche della voce, viene impiegata per proteggere gli account e garantire l'accesso solo agli utenti autorizzati. 
  • Fatturazione. L'intelligenza artificiale permette di automatizzare le attività amministrative di routine, riduce i costi e gli errori. 
  • Investimenti. Le società d'investimento utilizzano il deep learning per trovare le opportunità di investimento e migliorare i loro algoritmi per previsioni future più accurate.

Se le applicazioni dell'AI/ML variano anche di molto in base al settore, qualunque azienda può trarre notevoli vantaggi dall'adozione di una base affidabile ed efficiente. 

Red Hat OpenShift è una piattaforma unificata che consente di realizzare, modernizzare e distribuire applicazioni in maniera scalabile. Accelera i cicli di vita dell'intelligenza artificiale e del machine learning e la distribuzione intelligente delle applicazioni, oltre a offrire ai data scientist l'agilità, la flessibilità, la portabilità e la scalabilità necessarie per addestrare, testare e distribuire i modelli in produzione.

Red Hat® OpenShift® AI offre un ambiente flessibile che consente a data scientist, ingegneri e sviluppatori di creare, distribuire e integrare progetti in modo più rapido ed efficiente. Tra i vantaggi: sicurezza e integrazione del ciclo di vita dell'operatore.

Scopri di più su OpenShift AI

 

Grazie all'ecosistema di partner certificati di Red Hat è possibile integrare nell'architettura un'ampia gamma di soluzioni di AI/ML e di strumenti per lo sviluppo di applicazioni. In questo modo le aziende possono adottare efficacemente le tecnologie di AI/ML per le applicazioni intelligenti e ottenere risultati migliori per il business.

Scopri l'ecosistema di partner per l'intelligenza artificiale

Scopri le esperienze di aziende, operanti nel settore della sanità, dell'istruzione e dell'automotive, che hanno adottato le soluzioni Red Hat per eseguire i carichi di lavoro di AI/ML.

Leggi le storie di successo

Approfondisci

Articolo

Cos'è l'IA generativa?

L'IA generativa crea nuovi contenuti usando i modelli di deep learning il cui training è stato eseguito su set di dati enormi.

Articolo

Cos'è il machine learning?

Il machine learning è una tecnica che permette di addestrare i computer a individuare schemi, a eseguire analisi predittive e a imparare dall'esperienza, senza alcuna programmazione esplicita.

Articolo

Cosa sono i modelli di base?

Un modello di base è una particolare tipologia di modello di machine learning (ML) che viene addestrato per eseguire una specifica gamma di attività. 

Maggiori informazioni su AI/ML

Prodotti

Ora disponibile

Una piattaforma per modelli fondativi concepita per sviluppare, testare ed eseguire, in modo semplice, i modelli linguistici di grandi dimensioni (LLM) della famiglia Granite per applicazioni aziendali.

Il portfolio di soluzioni incentrate sull'IA è una gamma di strumenti che permettono di addestrare, ottimizzare, impiegare, monitorare e gestire iniziative e modelli di AI/ML su Red Hat OpenShift.

Una piattaforma applicativa di livello enterprise che grazie a servizi verificati consente la distribuzione delle app su un'ampia gamma di infrastrutture. 

Red Hat Ansible Lightspeed with IBM watsonx Code Assistant è un servizio di IA generativa progettato da e per gli sviluppatori, gli operatori e gli autori dell'automazione Ansible. 

Risorse

ebook

Considerazioni essenziali per la creazione di un ambiente di AI/ML pronto per il passaggio in produzione

Resoconto analitico

The Total Economic Impact™ Of Red Hat Hybrid Cloud Platform For MLOps

Webinar

Getting the most out of AI with open source and Kubernetes