Account Accedi
Jump to section

I vantaggi dei Big Data

Copia URL

Per le aziende moderne è fondamentale riconoscere il vero valore dei dati di cui dispongono. Prima di poterli analizzare, però, occorre accedere ai dati da tutte le sorgenti in modo preciso, sicuro e rapido. Come fare? Con una base che integri più sorgenti di dati e che consenta di trasferire i carichi di lavoro tra ambienti on-premise e cloud.

I metodi di elaborazione tradizionali sono inadatti a gestire le dimensioni o la complessità dei big data, di fatto contraddistinti dal loro volume, dalla loro varietà e dalla loro velocità (note come le "tre V"). Il volume fa riferimento alle loro dimensioni, la varietà indica l'ampia gamma di formati non standard e, infine, la velocità allude alla necessità di elaborarli in maniera rapida ed efficiente.

Affinché i dati apportino benefici effettivi devono poter essere protetti, elaborati, compresi e utilizzati. Solo un'efficiente gestione dei big data permette di sfruttare le informazioni in tempo reale per migliorare i processi aziendali. L'elaborazione dei dati in tempo reale è uno degli obiettivi strategici principali delle aziende che puntano a offrire valore ai clienti in modo coerente e lineare, oltre a essere una delle caratteristiche cruciali dell'edge computing. Sono infatti questi dettagli estrapolati dai big data a consentire di ridurre i costi, migliorare l'efficienza e scoprire nuovi modi per accrescere i profitti ampliando il portafoglio clienti. 

L'analisi dei big data consiste nel raccogliere tutti i raw e dark data e trasformarli in informazioni comprensibili e utilizzabili. I dark data sono dati raccolti durante le normali attività aziendali che devono essere archiviati e protetti a fini di compliance. Benché spesso sottostimati, questi dati possono, insieme ad altri, includere informazioni utili ad apportare miglioramenti in azienda.

Anziché gestire i problemi in un secondo momento, le informazioni contenute nei big data ti permettono di prevenirli, risparmiando. Attraverso l'analisi dei modelli di dati è possibile anticipare, anziché indovinare, i comportamenti e le esigenze dei clienti, accrescendo il fatturato.

I software analitici devono essere eseguiti all'interno di un'architettura flessibile, completa e affidabile per essere realmente efficaci, ecco perché ottimizzare l'infrastruttura IT è imprescindibile. La continuità nella raccolta, nell'analisi e nell'utilizzo dei dati va mantenuta anche quando lo stack tecnologico cambia.

Un Data Lake è un repository che archivia copie esatte o semi-esatte dei dati in un'unica posizione. I Data Lake sono sempre più diffusi nelle aziende alla ricerca di un repository globale e di grandi dimensioni per i propri dati e di una soluzione più conveniente rispetto ai database.

Grazie ai Data Lake è possibile ottenere una panoramica non raffinata dei dati. Ciò consente agli analisti più esperti di perfezionare le tecniche di analisi al di fuori dello storage di dati tradizionale (come un data warehouse) e in maniera indipendente da qualsiasi system-of-record, ovvero da una qualsiasi sorgente di dati autorevole per un determinato elemento di dati. Per permettere agli analisti più competenti di continuare a esplorare nuovi metodi di analisi dei dati, perfezionandone le tecniche, disporre di un Data Lake diventa fondamentale.

Senza una manutenzione continua dei Data Lake e un piano che ne regoli l'accesso e l'utilizzo, Senza tutto questo, i dati rischierebbero di diventare inaccessibili, ingombranti, costosi e quindi, inutili. I Data Lake che non sono accessibili agli utenti vengono definiti "data swamp", ovvero "paludi di dati".  

Le varie unità aziendali (BU) delle grandi organizzazioni hanno esigenze specifiche in termini di dati. Ognuna di esse, per analizzarli, deve competere in qualche modo per poter accedere ai dati e all'infrastruttura necessaria. Esiste dunque un problema di risorse, a cui i Data Lake non sono in grado di porre rimedio. Ciò che può risolvere il problema è, invece, isolare il carico di lavoro multi-tenant con un contesto di dati condivisi. Cosa significa?

In pratica questa soluzione consente alle organizzazioni di ridurre il numero di copie condivisibili tra le BU tramite la containerizzazione o la virtualizzazione degli strumenti di analisi dei dati. In questo modo non occorre più creare una copia dei dati ogni volta che una nuova unità aziendale ne richiede l'accesso, né tantomeno scrivere gli script necessari per copiare i dati e far funzionare tutto.

I big data rappresentano una sfida all'integrazione agile. Come è possibile condividere i dati tra più unità aziendali senza violare gli accordi sul livello di servizio? Come si possono sfruttare al massimo i dati a disposizione?

Benché stimolante, l'analisi dei big data è un'operazione complessa. I data scientist si occupano dell'analisi dei dati per offrire all'azienda informazioni e raccomandazioni utili e, per agevolarli, i data engineer sono responsabili di identificare, assemblare e gestire gli strumenti necessari in un flusso di dati. Il team amministrativo che gestisce l'infrastruttura, infine, deve assicurarsi di fornire i servizi di base.  Ogni singola fase presenta delle sfide in termini di integrazione, capacità di storage e riduzione dei budget IT.

Se cerchi una soluzione di integrazione, devi accertarti che:

  • I tuoi dati siano affidabili e che sia presente un'unica versione

  • La tua capacità di storage sia adeguata e che lo storage basato sull'hardware non frammenti le informazioni ostacolandone l'individuazione, l'accesso e la gestione

  • La tua architettura sia in grado di assecondare la costante evoluzione delle tecnologie dei dati

  • I vantaggi offerti dal cloud siano sfruttati al massimo

  • I tuoi dati siano protetti e che sia stato predisposto un piano di sicurezza per i big data.

Approfondisci

Articolo

I vantaggi dei servizi dati

Con servizi dati si indicano raccolte di piccole funzioni indipendenti e a basso accoppiamento utilizzate per l'ottimizzazione, l'organizzazione, la condivisione e l'elaborazione dei dati in base a informazioni acquisite e salvate su volumi per l'archiviazione dei dati.

Articolo

Cos'è lo storage su cloud?

Lo storage su cloud è l'organizzazione dei dati archiviati in un'ubicazione che è accessibile tramite Internet da chiunque abbia le debite autorizzazioni. Scopri di più su come funziona.

Articolo

Perché scegliere lo storage Red Hat?

Scopri cos'è lo storage software-defined e come eseguire il deployment di una soluzione di storage software-defined Red Hat che offre la flessibilità di gestire, archiviare e condividere i dati in base alle tue esigenze.

Scopri di più sullo storage

Prodotti

Red Hat OpenShift Data Foundation

Una soluzione di storage software defined che fornisce uno spazio di archiviazione dati permanente durante l'avvio e l'arresto dei container tra gli ambienti.

Red Hat Gluster Storage

Una piattaforma di storage software defined distribuibile in ambienti bare metal, virtuali, containerizzati e cloud.

Red Hat Ceph Storage

Un sistema di storage open source software defined, altamente scalabile e in grado di gestire in modo efficace petabyte di dati.

Red Hat Hyperconverged Infrastructure

Una soluzione che offre capacità di elaborazione e storage software defined, con percorso condiviso, scalabili ed eseguibili su hardware efficiente e conforme agli standard di settore.

Risorse

White paper

Riduci il debito tecnico dell'infrastruttura con la modernizzazione dell'IT.

Sintesi

Ottimizza ed esegui la migrazione a un ambiente IT cloud ready con Red Hat e Intel

Illustration - mail

Ricevi contenuti simili

Iscriviti a Red Hat Shares, la nostra newsletter gratuita.

Red Hat logo LinkedInYouTubeFacebookTwitter

Prodotti

Strumenti

Provare, acquistare, vendere

Comunica

Informazioni su Red Hat

Red Hat è leader mondiale nella fornitura di soluzioni open source per le aziende, tra cui Linux, Kubernetes, container e soluzioni cloud. Le nostre soluzioni open source, rese sicure per un uso aziendale, consentono di operare su più piattaforme e ambienti, dal datacenter centrale all'edge della rete.

Ricevi la nostra newsletter, Red Hat Shares

Iscriviti subito

Seleziona la tua lingua

© 2022 Red Hat, Inc. Red Hat Summit