Welcome to Neural Magic's monthly vLLM roundup! We are excited to announce the agreement to be acquired by Red Hat. Joining forces with the industry's open source leader will enable us to bring our cutting-edge AI model optimization and accelerated inference technology to a worldwide audience of enterprises adopting open LLM capabilities.
Keep scrolling for exciting vLLM updates and opportunities to engage with the community!
Bi-Weekly vLLM Office Hours
Recent Recordings
vLLM Project Update: 2024 Retrospective and 2025 Roadmap | Watch Now
Exploring Machete, a Mixed-Input GEMM Kernel for Hopper GPUs | Watch Now
Disaggregated Prefill and KV Cache Storage in vLLM | Watch Now
SOTA Tool-Calling Implementation in vLLM | Watch Now
Take Your AI Performance to the Next Level
2:4 Sparse Llama: Smaller Models for Efficient GPU Inference
Large language models (LLMs) are approaching their limits in terms of traditional scaling, with billions of parameters added for relatively small accuracy gains and advanced quantization techniques squeezing out the last possible bits before accuracy plummets.
We Ran Over Half a Million Evaluations on Quantized LLMs: Here's What We Found
Quantizing models to lower precision formats, such as 8-bit or 4-bit, significantly reduces computational costs and accelerates inference.
Introducing Machete, a Mixed-Input GEMM Kernel Optimized for NVIDIA Hopper GPUs
Mixed-input quantization is a technique that processes weights and activations at different precisions in neural networks.
Research From Our Labs 🧪
1️⃣ "Give Me BF16 or Give Me Death"? Accuracy-Performance Trade-Offs in LLM Quantization | Read Here
2️⃣ PV-Tuning: Beyond Straight-Through Estimation for Extreme
LLM Compression | Read Here
3️⃣ QuaRot: Outlier-Free 4-Bit Inference in Rotated LLMs | Read Here
4️⃣ The Iterative Optimal Brain Surgeon: Faster Sparse Recovery by Leveraging Second-Order Information | Read Here
5️⃣ MicroAdam: Accurate Adaptive Optimization with Low Space Overhead and Provable Convergence | Read Here
vLLM has surpassed 32,000 stars! 🌟 Be sure to add your star and join the community. Thank you for your support.
Ressource
Erste Schritte mit KI für Unternehmen: Ein Guide für den Einstieger
Über den Autor
Saša Zelenović is a Principal Product Marketing Manager at Red Hat, joining in 2025 through the Neural Magic acquisition where he led as Head of Marketing. With a passion for developer-focused marketing, Sasa drives efforts to help developers compress models for inference and deploy them with vLLM. He co-hosts the bi-weekly vLLM Office Hours, a go-to spot for insights and community around all things vLLM.
Ähnliche Einträge
The AI resolution that will still matter in 2030
Resilient model training on Red Hat OpenShift AI with Kubeflow Trainer
Technically Speaking | Platform engineering for AI agents
Technically Speaking | Driving healthcare discoveries with AI
Nach Thema durchsuchen
Automatisierung
Das Neueste zum Thema IT-Automatisierung für Technologien, Teams und Umgebungen
Künstliche Intelligenz
Erfahren Sie das Neueste von den Plattformen, die es Kunden ermöglichen, KI-Workloads beliebig auszuführen
Open Hybrid Cloud
Erfahren Sie, wie wir eine flexiblere Zukunft mit Hybrid Clouds schaffen.
Sicherheit
Erfahren Sie, wie wir Risiken in verschiedenen Umgebungen und Technologien reduzieren
Edge Computing
Erfahren Sie das Neueste von den Plattformen, die die Operations am Edge vereinfachen
Infrastruktur
Erfahren Sie das Neueste von der weltweit führenden Linux-Plattform für Unternehmen
Anwendungen
Entdecken Sie unsere Lösungen für komplexe Herausforderungen bei Anwendungen
Virtualisierung
Erfahren Sie das Neueste über die Virtualisierung von Workloads in Cloud- oder On-Premise-Umgebungen