Connexion / Inscription Account
Jump to section

What is network virtualization?

Copier l'URL

Network virtualization is the transformation of a network that was once hardware-dependent into a network that is software-based. Like all forms of IT virtualization, the basic goal of network virtualization is to introduce a layer of abstraction between physical hardware and the activities that utilize that hardware.

More specifically, network virtualization allows network functions, hardware resources, and software resources to be delivered independent of hardware—as a virtual network. It can be used to consolidate many physical networks, subdivide one such network, or connect virtual machines (VMs) together.

This can optimize how digital service providers utilize their server resources (i.e. less idle servers), allow them to use standard servers for functions that once required expensive proprietary hardware, and generally improve the speed, flexibility, and reliability of their networks.

There are two kinds of network virtualization: external virtualization and internal virtualization. External network virtualization can combine systems physically attached to the same local area network (LAN) into separate virtual local area networks (VLANs), or conversely can divide separate LANs into the same VLAN. This allows service providers to improve a large network’s efficiency.

Unlike external network virtualization which acts on systems outside of a single server, internal network virtualization acts within one server to emulate a physical network. This is typically done to improve a server’s efficiency, and involves configuring a server with software containers. With containers, individual applications can be isolated or different operating systems can be run on the same server.

Network virtualization abstracts all IT infrastructure elements (compute, network, and storage) away from proprietary hardware, pooling them together. From this pool, resources can be deployed automatically where they are needed most as demands and business needs change. This is especially relevant in the telecommunications industry, where traditional providers are challenged with transforming their networks and operations to keep up with technological innovation.

Whether it’s virtual reality in remote surgery or smart grids allowing ambulances to safely speed through traffic lights, new advancements offer the promise of radically improved and optimized experiences. But the traditionally hardware-dependent networks of many service providers must be transformed to accommodate this innovation. Network virtualization offers service providers the agility they need to keep up.

Just as hyperscale public cloud providers have demonstrated how cloud-native architectures and open source development can accelerate service delivery, deployment, and iteration, telecommunication service providers can take this same approach to operate with greater agility, flexibility, resilience, and security. They can manage infrastructure complexity through  automation and a common horizontal platform. They can also meet the higher consumer and enterprise expectations of performance, safety, ubiquity, and user experience. With cloud-native architectures and automation, providers can more rapidly change and add services and features to better respond to customer needs and demands.

Most digital service providers are already committed to network functions virtualization (NFV). This approach:

  • Uses less (and less expensive) hardware.

  • Increases flexibility and workload portability.

  • Provides the ability to spin workloads up and down with minimal effort.

  • Allows resources to be scaled elastically to address changing network demands.

The economic benefits of virtualizing network infrastructure can be significant, with the Radio Access Network (RAN) representing an important transformation opportunity for service providers. ACG Research estimates that network operators who virtualize the entire RAN can see total cost of ownership (TCO) savings of 44%.

Red Hat offers an open source-based carrier grade solution: Red Hat Solution for NFV. This solution helps Communication Service Providers (CSP) achieve IT and network convergence by adding NFV features to be available on existing open source products like Red Hat®️ OpenStack®️ Platform.

Like quick read articles?

Try another. We picked these 3 because they're relevant to network virtualization.


What is virtualization?

Virtualization is technology that lets you create useful IT services using resources that are traditionally bound to hardware. It allows you to use a physical machine’s full capacity by distributing its capabilities among many users or environments.


What is vRAN?

Virtualized radio access networks (vRANs) are a way for telecommunications operators to run their baseband functions as software. One of the primary benefits of virtualizing radio access networks (RANs) is that RAN functions no longer require special proprietary hardware to run, and can instead be run on standard servers.


What is 5G?

5G refers to the fifth generation of mobile networks, representing upgrades in bandwidth and latency that enable services that weren’t possible under older networks. It’s designed to augment existing 4G LTE cellular networks or even replace them completely.