Secciones

Machine Learning: qué es, cómo funciona y usos

Copiar URL

 

Agilice el  lanzamiento de la inteligencia artificial en cualquier entorno con Red Hat OpenShift AI

Conozca la manera en que Red Hat® OpenShift® AI agiliza todo el ciclo de vida de los modelos y las aplicaciones de inteligencia artificial y machine learning con herramientas integradas, flujos de trabajo repetibles, opciones flexibles de implementación y un ecosistema de partners confiable.

 

El machine learning (aprendizaje automático) es la técnica que consiste en entrenar a una computadora para que encuentre patrones, realice predicciones y aprenda de la experiencia sin una programación explícita.

El  machine learning (aprendizaje automático) es una subcategoría de la inteligencia artificial (IA) que utiliza algoritmos para identificar patrones y hacer predicciones dentro de un conjunto de datos, los cuales pueden ser números, texto e incluso imágenes. En las condiciones ideales, el aprendizaje automático nos permite interpretar los datos con mayor rapidez y precisión de la que tendríamos sin la ayuda de las máquinas.

La inteligencia artificial surge cuando los humanos crean inteligencia similar a la humana de manera sintética dentro de una máquina. El aprendizaje automático implica programar las máquinas para que imiten funciones cognitivas específicas propias de los humanos, como la percepción, el aprendizaje y la resolución de problemas.

La manera de lograr que una máquina piense como una persona es entrenándola para que cree su propio modelo predictivo que le permita analizar los datos. Para iniciar el proceso, deberá aportar datos a la computadora y elegir un modelo de aprendizaje para darle instrucciones sobre su procesamiento.

Los modelos de machine learning (aprendizaje automático) pueden utilizar los datos para cumplir tres funciones:

  • Describir lo sucedido
  • Predecir lo que sucederá
  • Hacer sugerencias sobre las medidas que se deberían tomar


El modelo de aprendizaje que elija para entrenar la máquina dependerá de la complejidad de la tarea y del resultado que busque obtener. Hay tres estilos de machine learning (aprendizaje automático):

Aprendizaje supervisado: se utilizan conjuntos de datos etiquetados para entrenar los modelos. Se emplea para tareas como el reconocimiento de imágenes.

Aprendizaje no supervisado: se analizan los datos sin etiquetar para encontrar similitudes, patrones y tendencias. Estos modelos se utilizan para tareas como la segmentación de clientes, los sistemas de recomendación y el análisis de datos generales.

Aprendizaje por refuerzo: los modelos se entrenan mediante un proceso de prueba y error dentro de un sistema de recompensas. Se puede utilizar, por ejemplo, para entrenar una computadora con el fin de que participe en un juego donde las acciones derivan en una victoria o en una derrota.

Una vez que la computadora se familiarice con la forma en la que debe interpretar los datos (gracias al modelo de aprendizaje y los datos de entrenamiento), podrá hacer predicciones y ejecutar tareas cuando reciba datos nuevos. Poco a poco, sus predicciones serán más precisas a medida que aprenda de los flujos constantes de datos y podrá realizar las tareas de manera más rápida y precisa que las personas.

El machine learning (aprendizaje automático) y la inteligencia artificial se pueden utilizar para mejorar la experiencia de los usuarios, anticipar el comportamiento de los clientes, supervisar sistemas de detección de fraudes e incluso ayudar a los proveedores de atención médica a detectar afecciones que ponen en riesgo la vida. Muchos de nosotros interactuamos con el machine learning (aprendizaje automático) y disfrutamos de sus beneficios todos los días, por ejemplo:

  • Los algoritmos de recomendación en las plataformas de transmisión de video
  • Las líneas de ayuda automática y los chatbots
  • Los anuncios personalizados
  • Los presupuestos automatizados de las instituciones financieras

El aprendizaje profundo es la técnica del machine learning (aprendizaje automático) que posibilita la inteligencia artificial generativa y se utiliza para analizar e interpretar grandes cantidades de datos. Los modelos de lenguaje de gran tamaño (LLM) son un subconjunto de la inteligencia artificial generativa que representan una aplicación fundamental del machine learning (aprendizaje automático), ya que demuestran la capacidad de comprender y generar lenguaje humano a una escala sin precedentes. 

Hoy en día, se espera que las empresas usen el  machine learning (aprendizaje automático), y hay cada vez más casos prácticos transformadores en los sectores de la salud, los servicios financieros, las telecomunicaciones y el gobierno, entre otros.

IBM y Red Hat trabajaron juntos para crear Ansible® Lightspeed with IBM watsonx Code Assistant, un servicio de inteligencia artificial generativa que permite a los desarrolladores generar contenido de Ansible con mayor eficiencia.

Red Hat ofrece una base común para que sus equipos diseñen e implementen las aplicaciones de inteligencia artificial y los modelos de machine learning (aprendizaje automático) de forma transparente y regulada. 

Red Hat® OpenShift® AI es una plataforma que puede entrenar los modelos de inteligencia artificial con sus propios datos, distribuirlos y aplicar en ellos las técnicas de ajuste de instrucciones y perfeccionamiento para sus casos prácticos específicos.

Para las implementaciones de inteligencia artificial de gran tamaño, Red Hat OpenShift ofrece una plataforma de aplicaciones adaptable que es adecuada para las cargas de trabajo de inteligencia artificial, con acceso a los aceleradores de hardware conocidos.

Red Hat también utiliza sus propias herramientas de Red Hat OpenShift AI para mejorar la utilidad de otros sistemas de software open source, como Red Hat Ansible Lightspeed with IBM watsonx Code Assistant. Esta herramienta permite que los desarrolladores creen contenido de Ansible de forma más eficiente. Lee el texto sencillo que los usuarios escriben en inglés y, luego, interactúa con los modelos base IBM watsonx para generar recomendaciones de código para las tareas de automatización, que después se utilizarán para crear playbooks de Ansible.

Además, las integraciones de los partners de Red Hat abren paso a un ecosistema de herramientas confiables de inteligencia artificial diseñadas para funcionar en las plataformas open source.

Artículos relacionados

Artículo

El concepto de la inteligencia artificial generativa

La inteligencia artificial generativa crea contenido nuevo a partir de los modelos de aprendizaje profundo que están entrenados con conjuntos grandes de datos.

Artículo

El aprendizaje automático

El aprendizaje automático es la técnica que consiste en entrenar a una computadora para que encuentre patrones, realice predicciones y aprenda de la experiencia sin una programación explícita.

Artículo

¿Qué son los modelos base?

Se trata de modelos de aprendizaje automático que se entrenan previamente para llevar a cabo diversas tareas. 

Más información sobre la inteligencia artificial y el machine learning

Productos

Nuevo

Una plataforma de modelo base que permite desarrollar, probar y ejecutar sin problemas los modelos de lenguaje de gran tamaño (LLM) de Granite para las aplicaciones empresariales.

Una cartera de soluciones centradas en la inteligencia artificial que ofrece herramientas para entrenar, mejorar, distribuir, supervisar y gestionar los modelos y los experimentos con inteligencia artificial y machine learning en Red Hat OpenShift.

Una plataforma de aplicaciones empresariales que ofrece un conjunto unificado de servicios probados para lanzar aplicaciones al mercado en la infraestructura de su preferencia. 

Red Hat Ansible Lightspeed with IBM watsonx Code Assistant es un servicio de inteligencia artificial generativa que está diseñado por y para automatizadores, operadores y desarrolladores de Ansible. 

Recursos

ebook

Los aspectos principales en el diseño de un entorno de AI/ML listo para la producción

Informe de analistas

Total Economic Impact™ of Red Hat Hybrid Cloud Platform for MLOps

Webinar

Aproveche al máximo la IA con el open source y Kubernetes.