Zu Abschnitt

Was ist Deep Learning?

URL kopieren

Deep Learning ist ein KI-Verfahren (Künstliche Intelligenz), das Computern beibringt, Daten mithilfe eines Algorithmus zu verarbeiten, der sich an die Funktionsweise des menschlichen Gehirns anlehnt. 

Deep Learning nutzt künstliche Intelligenz und maschinelles Lernen (KI und ML), um Data Scientists bei der Erfassung, Analyse und Interpretation großer Datenmengen zu unterstützen. Beim Deep Learning, auch bekannt unter den Begriffen „Deep Neural Learning“ oder „Deep Neural Networking“, lernen Computer, Wissen durch Beobachtung zu erwerben. Sie imitieren also die Art und Weise, wie wir Menschen uns Wissen aneignen. 

Im menschlichen Gehirn finden sich viele miteinander vernetzte Neuronen, die als Boten für Informationen fungieren, wenn das Gehirn Informationen (oder Daten) verarbeitet. Neuronen nutzen elektrische Impulse und chemische Signale, um miteinander zu kommunizieren und Informationen zwischen den unterschiedlichen Bereichen des Gehirns zu übertragen. 

Auf diesem biologischen System basieren künstliche neuronale Netze (KNN), die Architektur, die Deep Learning als Grundlage dient. KNN werden aus künstlichen Neuronen gebildet, die aus Softwaremodulen bestehen, die als Knoten oder Nodes bezeichnet werden. Anders als das Gehirn, das chemische Signale nutzt, kommunizieren und übermitteln diese Knoten Informationen mithilfe mathematischer Berechnungen. Dieses simulierte neuronale Netz (SNN) verarbeitet Daten, indem es Datenpunkte in Cluster gruppiert und Vorhersagen trifft.

Wir können uns Deep Learning (DL) als eine Art Flussdiagramm vorstellen, das mit einer Eingabeschicht beginnt und mit einer Ausgabeschicht endet. Zwischen diesen beiden Schichten befinden sich sogenannte „verborgene Schichten“, die Informationen auf unterschiedlichen Ebenen verarbeiten und dabei ihr Verhalten mit dem Empfang neuer Daten kontinuierlich anpassen. DL-Modelle können Hunderte von verborgenen Schichten aufweisen, die beim Entdecken von Zusammenhängen und Mustern innerhalb des Datensatzes eine Rolle spielen. 

In der aus mehreren Knoten bestehenden Eingabeschicht werden Daten in das Modell eingeführt, kategorisiert und anschließend in die nächste Schicht verschoben. Der Weg der Daten durch die verschiedenen Schichten basiert dabei auf den Berechnungen, die in den einzelnen Knoten festgelegt wurden. Während die Daten so sämtliche Schichten durchlaufen, beziehen sie Beobachtungen mit ein, die schließlich die Ausgabe – die finale Analyse – der Daten bilden.

Anwendungen, die Deep Learning einsetzen, sind bereits in unser tägliches Leben integriert und finden in vielen verschiedenen Branchen Verwendung. Use Cases für Deep Learning entwickeln sich ständig weiter. Zu den aktuell am meisten genutzten Technologien gehören maschinelles Sehen, Spracherkennung und NLP (Natural Language Processing). 

  • Maschinelles Sehen: Computer können mithilfe von DL-Methoden Bilder auf die gleiche Weise erfassen und verstehen, wie Menschen es tun. Dazu gehört die automatisierte Moderation von Inhalten, die Gesichtserkennung und die Klassifizierung von Bildern. 
  • Spracherkennung: DL-Modelle können Tonhöhe und Tonfall sowie verschiedene Sprachen und Akzente analysieren. Diese Fähigkeit lässt sich nicht nur für ein besseres Kundenerlebnis nutzen, sondern auch unter dem Gesichtspunkt der Barrierefreiheit für Fälle, in denen eine Transkription in Echtzeit erforderlich ist.
  • NLP (Natural Language Processing): Mit DL-Algorithmen können Computer Textdaten und Dokumente analysieren und Erkenntnisse daraus gewinnen. So lassen sich lange Dokumente zusammenfassen, zentrale Aussagen indexieren, die ein bestimmtes Sentiment erkennen lassen (etwa positive oder negative Kommentare), und Erkenntnisse für automatisierte virtuelle Assistenten und Chatbots generieren. 
     

Hier sind einige Beispiele, wie die Prinzipien von Deep Learning in verschiedenen Branchen genutzt werden:

  • Kundenservice: Chatbots, virtuelle Assistenten und Serviceportale mit Einwahlmöglichkeit nutzen Tools wie Spracherkennung. 
  • Finanzdienstleistungen: Prädiktive Analysen steuern den algorithmischen (also automatisierten) Wertpapierhandel, bewerten die geschäftlichen Risiken bei der Bewilligung von Darlehensanträgen, decken Betrug auf und unterstützen das Management von Kredit- und Anlageportfolios.
  • Gesundheitswesen: Durch die Digitalisierung von Patientenakten können Bilderkennungsanwendungen Fachkräfte im Bereich bildgebende Diagnostik unterstützen. Solche Anwendungen können lernen, automatisch Warnzeichen zu erkennen, die auf potenzielle medizinische Diagnosen hinweisen. Lesen Sie, wie HCA Healthcare mithilfe von prädiktiven Analysen einen standardisierten digitalen Ansatz für die Diagnose einer Sepsis etabliert. 
  • Medien und Unterhaltung: Ob Onlineshopping oder Streaming-Services – mithilfe von Deep Learning werden die Aktivitäten von Nutzenden nachverfolgt, um personalisierte Empfehlungen zu entwickeln.
  • Industrielle Automatisierung: Beim Einsatz in Fabriken und Lagerhäusern können DL-Anwendungen automatisch erkennen, wenn Menschen oder Objekte keinen ausreichenden Sicherheitsabstand zu Maschinen haben. Auch im Bereich Qualitätskontrolle oder prädiktive Wartung lässt sich Deep Learning nutzen. 
  • Selbstfahrende Autos: Forschende der Automobilbranche trainieren Autos mithilfe von Deep Learning, Objekte wie Stoppschilder, Ampeln, Zebrastreifen und zu Fuß gehende Menschen zu erkennen.
  • Gesetzesvollzug: Spracherkennung, maschinelles Sehen und NLP (Natural Language Processing) können Zeit und Ressourcen sparen, da sie die Analyse großer Datenmengen erleichtern. 
  • Luft- und Raumfahrt sowie Militär: Bei der Überwachung großer geografischer Bereiche lässt sich Deep Learning nutzen, um Objekte zu erkennen, wichtige Bereiche aus der Ferne zu identifizieren und für Truppen sichere oder unsichere Gebiete zu verifizieren. 

Deep Learning ist eine spezielle Form des maschinellen Lernens und unterscheidet sich durch die Art der verarbeiteten Daten und die Lernmethoden, die dabei zur Anwendung kommen.

Bei klassischen ML-Algorithmen ist ein gewisses Maß an menschlicher Intervention erforderlich: Die Datensätze müssen vorverarbeitet werden, bevor sie in das Modell eingeführt werden. Anhand der Eingabedaten werden bestimmte Features definiert und dann entsprechend markiert, in Tabellen organisiert und anschließend in das ML-Modell eingeführt. Bei DL-Algorithmen hingegen ist ein solches Maß an Vorverarbeitung nicht erforderlich. Sie können auch unstrukturierte Daten wie Textdokumente, Bilder mit Pixeldaten oder Dateien mit Audiodaten verstehen. 

In Fällen mit sehr großen Datenmengen, fehlendem Hintergrundwissen zum Thema oder komplexen, zeitaufwendigen Aufgaben kann Deep Learning gegenüber klassischem maschinellem Lernen gegebenenfalls die bevorzugte Lösung sein.

Wir wissen jetzt, dass Deep Learning auf einer Struktur von Knoten basiert, die in einem künstlichen neuronalen Netz miteinander kommunizieren. Um ein solches KNN zu erstellen, müssen zusätzlich zu den Daten auch Berechnungen und Parameter in das Modell eingespeist werden. Außerdem müssen die notwendigen Vorkehrungen getroffen werden, um sicherzustellen, dass die Berechnungen Verzerrung und Varianz berücksichtigen. 

Beim maschinellen Lernen bezieht sich Verzerrung darauf, inwieweit Ihr Modell Annahmen oder Generalisierungen auf die Daten anwendet, um die Zielfunktion einfacher lernen zu können. Eine hohe Verzerrung bedeutet, dass das Modell bei der Verarbeitung von Informationen (fehlerhafte) Vereinfachungen und Abkürzungen vornimmt. 

Varianz bezieht sich darauf, wie weit die einzelnen Datenpunkte vom Mittel entfernt sind, oder darauf, wie weit bei der statistischen Messung der Abstand zwischen den Zahlen in einem Datensatz ist. Im Gegensatz zur Verzerrung bezieht sich Varianz darauf, wie sensibel ein Modell hinsichtlich der Trainingsdaten ist. Eine hohe Varianz (oder Sensibilität) bedeutet, dass das Modell zu sehr auf Details achtet und die zugrunde liegenden Muster im Datensatz nicht erkennt. 

Wenn beim überwachten Lernen die Varianz zu hoch und die Verzerrung zu niedrig ist, spricht man von Überanpassung. Wenn die Verzerrung hoch und die Varianz niedrig ist, spricht man von Unteranpassung. Eine optimale Lösung zu erstellen ist nicht einfach, und das Phänomen ist allgemein als Verzerrung-Varianz-Dilemma bekannt. 

Parameter definieren Grenzen, und Grenzen sind entscheidend, um die enormen Datenmengen zu verstehen, die DL-Algorithmen verarbeiten müssen. Überanpassung und Unteranpassung lassen sich dabei oft korrigieren, indem jeweils weniger oder mehr Parameter verwendet werden. 

Berücksichtigung menschlicher Verzerrung

Wenn ein DL-Modell anhand von Daten trainiert wird, die statistisch verzerrt sind oder keine akkurate Darstellung der Bevölkerung bieten, kann es zu einer fehlerhaften oder verfälschten Ausgabe kommen. Bestehende menschliche Verzerrung wird leider oft auf künstliche Intelligenz übertragen und birgt somit das Risiko, diskriminierende Algorithmen und verzerrte Ausgaben zu schaffen. 

Der Einsatz von KI in Unternehmen zur Verbesserung von Produktivität und Performance nimmt stetig zu. Daher ist es entscheidend, dass dafür Strategien eingesetzt werden, um Verzerrungen zu minimieren. Dies beginnt bereits mit inklusiven Design-Prozessen und einer sorgfältigeren Berücksichtigung von repräsentativer Diversität innerhalb der erfassten Daten. 

Was ist eine Black Box?

Der Ausdruck „Black Box“ bezieht sich auf den Fall, dass ein KI-Programm eine Aufgabe in seinem neuronalen Netz durchführt und seine Arbeit nicht zeigt. Dadurch kommt es zu einer Situation, in der nicht einmal die Data Scientists und Engineers, die den Algorithmus entwickelt haben, genau erklären können, wie das Modell zu einer bestimmten Ausgabe gelangt ist. Durch den Mangel an Interpretierbarkeit bei Black Box-Modellen kann es zu negativen Auswirkungen kommen, wenn diese für Entscheidungen von großer Tragweite genutzt werden, besonders in Branchen wie Gesundheitswesen, Finanzwesen oder Strafrecht. 

DL-Modelle können komplexere Rechenaufgaben ohne menschliches Eingreifen durchführen, erfordern dabei aber eine höhere Rechenleistung, eine ausreichende Infrastruktur und größere Trainingsdatensätze. Mit Cloud Computing können Teams gleichzeitig auf mehrere Prozessoren zugreifen, etwa Cluster von GPUs (Graphic Processing Units) und CPUs (Central Processing Units) – eine ideale Umgebung zum Durchführen komplexer mathematischer Operationen.

Werden DL-Modelle in der Cloud entworfen, entwickelt und trainiert, können Entwicklungsteams Workloads schnell und genau skalieren und verteilen. Gleichzeitig sinken dabei die operativen Kosten. 

Deep Learning und maschinelles Lernen am Edge

Das Arbeiten in der Cloud eröffnet Möglichkeiten für den Einsatz von maschinellem Lernen am Edge. Durch das Etablieren von Edge Computing Hubs, die mit Public Cloud-Ressourcen verknüpft sind, lassen sich Informationen in Echtzeit erfassen und analysieren. Dadurch können sie verschiedene Abläufe unterstützen: von Statusaktualisierungen in Lieferketten bis hin zu Informationen über Evakuierungsorte bei Katastrophen. 

Red Hat® OpenShift® ist eine Anwendungsplattform mit umfassenden Automatisierungsfunktionen, die Data Scientists und Unternehmen verschiedener Branchen dabei unterstützt, geschäftskritische und betriebsnotwendige Initiativen durch das Entwickeln intelligenter Anwendungen zu beschleunigen.

KI/ML in Red Hat OpenShift beschleunigt KI/ML-Workflows und die Bereitstellung von KI-basierten intelligenten Anwendungen mit selbst gemanagtem Red Hat OpenShift oder unserem KI/ML-Cloud-Service.

Durch die Anwendung von DevOps- und GitOps-Prinzipien automatisieren und vereinfachen Unternehmen den iterativen Prozess der Integration von ML-Modellen in Softwareentwicklungsprozesse, Produktions-Rollout, Überwachung, erneutes Training und erneute Bereitstellung für kontinuierliche Vorhersagegenauigkeit. Red Hat OpenShift enthält wichtige Funktionen, mit denen Sie MLOps (Machine Learning Operations) konsistent in Rechenzentren, Public-Cloud-Computing- und Edge-Computing-Umgebungen einsetzen können. 

Weiterlesen

ARTIKEL

Zustandsbehaftet oder zustandslos?

Ob etwas zustandsbehaftet oder zustandslos ist, hängt davon ab, wie lange der Zustand der Interaktion erfasst wird und wie diese Informationen gespeichert werden müssen.

ARTIKEL

Was ist Quarkus?

Quarkus ist ein Kubernetes-nativer Java Stack für Java Virtual Machines (JVMs) und native Kompilierung, mit dem Java speziell für Container optimiert wird.

ARTIKEL

Was ist Serverless?

Der Begriff „Serverless" (serverlos) bezieht sich auf ein cloudnatives Entwicklungsmodell, bei dem Entwickler Anwendungen erstellen und ausführen können, ohne Server verwalten zu müssen.

Mehr über cloudnative Anwendungen erfahren

Produkte

Eine Plattform, die es Ihnen ermöglicht, Unternehmensanwendungen schnell und effizient über die von Ihnen gewünschte Infrastruktur bereitzustellen.

Ressourcen

Training

Kostenloses Training

Developing Cloud-Native Applications with Microservices Architectures