AI268
Developing and Deploying AI/ML Applications on Red Hat OpenShift AI with Exam
Overview
Related offer
Get the Developing and Deploying AI/ML Applications on Red Hat OpenShift AI with Exam (AI268) at 15% off local MSRP, now through September 30, 2024. You must select both the course plus the exam to receive this offer. Discount will be applied to the local MSRP of eligible offerings at checkout. This offer may not be combined with other offers or discounts.
Course Description
An introduction to developing and deploying AI/ML applications on Red Hat OpenShift AI.
Developing and Deploying AI/ML Applications on Red Hat OpenShift AI (AI267) provides students with the fundamental knowledge about using Red Hat OpenShift for developing and deploying AI/ML applications. This course helps students build core skills for using Red Hat OpenShift AI to train, develop and deploy machine learning models through hands-on experience.
This course is based on Red Hat OpenShift® 4.14, and Red Hat OpenShift AI 2.8. The Red Hat Certified Specialist in OpenShift AI Exam (EX267) is included in the offering.
Course Content Summary
- Introduction to Red Hat OpenShift AI
- Data Science Projects
- Jupyter Notebooks
- Installing Red Hat OpenShift AI
- Managing Users and Resources
- Custom Notebook Images
- Introduction to Machine Learning
- Training Models
- Enhancing Model Training with RHOAI
- Introduction to Model Serving
- Model Serving in Red Hat OpenShift AI
- Introduction to Workflow Automation
- Elyra Pipelines
- Kubeflow Pipelines
Target Audience
- Data scientists and AI practitioners who want to use Red Hat OpenShift AI to build and train ML models
- Developers who want to build and integrate AI/ML enabled applications
- MLOps engineers responsible for installing, configuring, deploying, and monitoring AI/ML applications on Red Hat OpenShift AI
Recommended training
- Experience with Git is required
- Experience in Python development is required, or completion of the Python Programming with Red Hat (AD141) course
- Experience in Red Hat OpenShift is required, or completion of the Red Hat OpenShift Developer II: Building and Deploying Cloud-native Applications (DO288) course
- Basic experience in the AI, data science, and machine learning fields is recommended
Technology considerations
- No ILT classroom will be available
Outline
Course Outline
- Introduction to Red Hat OpenShift AI
- Identify the main features of Red Hat OpenShift AI, and describe the architecture and components of Red Hat AI
- Data Science Projects
- Organize code and configuration by using data science projects, workbenches, and data connections
- Jupyter Notebooks
- Use Jupyter notebooks to execute and test code interactively
- Installing Red Hat OpenShift AI
- Installing Red Hat OpenShift AI by using the web console and the CLI, and managing Red Hat OpenShift AI components
- Managing Users and Resources
- Managing Red Hat OpenShift AI users, and resource allocation for Workbenches
- Custom Notebook Images
- Creating custom notebook images, and importing a custom notebook through the Red Hat OpenShift AI dashboard
- Introduction to Machine Learning
- Describe basic machine learning concepts, different types of machine learning, and machine learning workflows
- Training Models
- Train models by using default and custom workbenches
- Enhancing Model Training with RHOAI
- Use RHOAI to apply best practices in machine learning and data science
- Introduction to Model Serving
- Describe the concepts and components required to export, share and serve trained machine learning models
- Model Serving in Red Hat OpenShift AI
- Serve trained machine learning models with OpenShift AI
- Introduction to Data Science Pipelines
- Create, run, manage, and troubleshoot data science pipelines
- Elyra Pipelines
- Create data science pipelines with Elyra
- Kubeflow Pipelines
- Create data science pipelines with Kubeflow Pipelines
Outcomes
Impact on the Organization
- Organizations collect and store vast amounts of information from multiple sources. With Red Hat OpenShift AI, organizations have a platform ready to analyze data, visualize trends and patterns, and predict future business outcomes by using machine learning and artificial intelligence algorithms.
Impact on the Individual
- As a result of attending this course, you will understand the foundations of the Red Hat OpenShift AI architecture. You will be able to install Red Hat OpenShift AI, manage resource allocations, update components and manage users and their permissions. You will also be able to train, deploy and serve models, including how to use Red Hat OpenShift AI to apply best practices in machine learning and data science. Finally you will be able to create, run, manage and troubleshoot data science pipelines.