Jump to section

Understanding big data

Copy URL

Finding real value in data is critical to every business today. But before we mine it for business insights, we need to access this data from all of our relevant sources accurately, safely, and quickly. How? With a foundation that integrates multiple data sources and can transition workloads across on-premise and cloud boundaries.

Big data is data that is either too large or too complex for traditional data-processing methods to handle. In general big data has come to be known for its "three Vs": volume, variety, velocity. Volume refers to the extreme size, variety refers to the wide range of nonstandard formats, and velocity refers to the need to process quickly and efficiently.

Data is valuable, but only if it can be protected, processed, understood, and acted upon. The goal of harnessing big data is to offer real-time information that you can use to improve your business. Real-time information processing is one of the major goals for companies attempting to deliver value to their customers in a consistent and seamless manner and is one of the crucial features of edge computing. Insights from big data could allow you to cut costs, operate more efficiently, and discover new ways to boost profits and reach new customers. 

Big data analytics is the term for the process of taking all of your raw and dark data and making it into something you can understand and use. Dark data is data that organizations collect during normal business activities that they must store and secure for compliance purposes. Dark data is often overlooked but, like the rest of your data, can yield valuable insights that you can use to improve your business.

Big data insights can help you prevent costly problems instead of reacting to them. Analyzing data patterns can help you predict customer behaviors and needs instead of guessing (which can also help you increase revenue).

To be effective, analytics software needs to run on a flexible, comprehensive, and reliable foundation. That’s why IT optimization is key. You need to make sure you can continue to gather, analyze, and use your data as your technology stack changes.

A data lake is a repository that stores near-exact or exact copies of your data in a single location. Data lakes are becoming more common in enterprises who want a holistic, large repository to manage their data. They are also less expensive than databases.

Data lakes let you keep an unrefined view of your data so that your top analysts can explore their refinement and analysis techniques outside of traditional data storage (like a data warehouse) and independent of any of the system-of-record (a name for the authoritative data source for a given element of data). If you want your most highly skilled analysts to continue honing their skills and exploring new ways of analyzing the data, you need a data lake.

Data lakes require continual maintenance and a plan for how you will access and use the data. Without this upkeep, you risk letting your data become junk—inaccessible, unwieldy, expensive, and useless. Data lakes that become inaccessible for their users are referred to as "data swamps."  

Large organizations have several business units (BUs) each with their own unique data needs. Each of these BUs has to compete in some way to get access to the data and infrastructure in order to analyze it—it’s a problem of resources. Data lakes don’t solve this problem. What you need, instead, is multi-tenant workload isolation with a shared data context. What does that mean?

Basically, instead of making a full copy of your data every single time a new business unit needs access (complete with the admin work of writing scripts to copy the data and make it all work), this solution enables your organization to pair down to just a handful of copies that can be shared across BUs through containerizing or virtualizing the data analytics tools.

Big data is an agile integration challenge. How do you share data amongst multiple business units while maintaining strict service level agreements? How do you get more value out of the data you have?

Mining big data is rewarding but complex. Data scientists are tasked with analyzing the data for insights and recommendations to take to the business. Data engineers need to identify, assemble, and manage the right tools into a data pipeline to best enable the data scientists. Finally, on the infrastructure side, the admin folks have to work deep in the infrastructure to provide the basic services that will be consumed.  Looming all along the way are the challenges of integration, storage capacity, and shrinking IT budgets.

As you look for an integration solution, ask:

  • Are your data sources reliable? Do you have one version of the truth?
  • Do you have adequate storage capacity? Does your hardware-based storage segregate data, making it hard to find, access, and manage?
  • Can your architecture adapt to constantly evolving data technology?
  • Are you taking advantage of the cloud?
  • Is your data protected? What security plan do you have in place for big data?

Keep reading


Understanding data services

Data services are collections of small, independent, and loosely coupled functions that enhance, organize, share, or calculate information collected and saved in data storage volumes.


What is cloud storage?

Cloud storage is the organization of data kept somewhere that can be accessed by anyone with the right permissions over the internet. Learn about how it works.


Why choose Red Hat storage?

Learn what software-defined storage is and how to deploy a Red Hat software-defined storage solution that gives you the flexibility to manage, store, and share data as you see fit.

More about storage


Software-defined storage that gives data a permanent place to live as containers spin up and down and across environments.

An open, massively scalable, software-defined storage system that efficiently manages petabytes of data.



Command Line Heroes Season 4, Episode 4:
"Floppies: The disks that changed the world"