What is AI/ML on Red Hat OpenShift?
AI/ML on Red Hat® OpenShift® accelerates AI/ML workflows and the delivery of AI-powered intelligent applications with self-managed Red Hat OpenShift, or our AI/ML cloud service.
What is a ML lifecycle?
A multi-phase process to obtain the power of large volumes and a variety of data, abundant compute, and open source machine learning tools to build intelligent applications.
Key challenges facing data scientists
Data scientists are primarily responsible for ML modeling to ensure the selected model continues to provide the highest prediction accuracy.
The key challenges data scientists face are:
- Selecting & deploying the right ML tools (ex. Apache Spark, Jupyter notebook TensorFlow, PyTorch, etc.)
- Complexities and time required to train, test, select, and retrain the ML model that provides the highest prediction accuracy
- Slow execution of modeling and inferencing tasks because of lack of hardware acceleration
- Repeated dependency on IT operations to provision and manage infrastructure
- Collaborating with data engineers and software developers to ensure input data hygiene, and successful ML model deployment in app dev processes
Why use containers and Kubernetes for your machine learning initiatives?
Containers and Kubernetes are key to accelerating the ML lifecycle as these technologies provide data scientists the much-needed agility, flexibility, portability, and scalability to train, test, and deploy ML models.
Red Hat® OpenShift® is the industry's leading containers and Kubernetes hybrid cloud platform. It provides all these benefits, and through the integrated DevOps capabilities (e.g. OpenShift Pipelines, OpenShift GitOps, and Red Hat Quay) and integration with hardware accelerators, it enables better collaboration between data scientists and software developers, and accelerates the roll out of intelligent applications across hybrid cloud (data center, edge, and public clouds).
Red Hat OpenShift AI
Red Hat OpenShift AI provides tools across the full lifecycle of AI/ML experiments and models for data scientists and developers of intelligent applications. It provides a fully supported sandbox in which to rapidly develop, train, and test machine learning (ML) models in the public cloud before deploying in production.
Benefits of Red Hat OpenShift for ML initiatives
Empower data scientists
- Self-service, consistent, cloud experience for data scientists across the hybrid cloud
- Empower data scientists with the flexibility and portability to use the containerized ML tools of their choice to quickly build, scale, reproduce, and share ML models.
- Use the most relevant ML tools via Red Hat certified Kubernetes Operators for both self-managed and our AI cloud service option.
- Eliminate dependency on IT to provision infrastructure for iterative, compute-intensive ML modeling tasks.
- Eliminate "lock-in" concerns with any particular cloud provider, and their menu of ML tools.
- Tight integration with CI/CD tools allows ML models to be quickly deployed iteratively, as needed.
Accelerate compute-intensive ML modeling jobs
Integrations with popular hardware accelerators such as NVIDIA GPUs via Red Hat certified GPU operator means that OpenShift can seamlessly meet the high compute resource requirements to help select the best ML model providing the highest prediction accuracy, and ML inferencing jobs as the model experiences new data in production.
Develop intelligent apps
OpenShift’s built-in DevOps capabilities enable MLOps to speed up delivery of AI-powered applications and simplify the iterative process of integrating ML models and continued redeployment for prediction accuracy.
Extending OpenShift DevOps automation capabilities to the ML lifecycle enables collaboration between data scientists, software developers, and IT operations so that ML models can be quickly integrated into the development of intelligent applications. This helps boost productivity, and simplify lifecycle management for ML powered intelligent applications.
- Building from the container model images registry with OpenShift Build.
- Continuous, iterative development of ML model powered intelligent applications with OpenShift Pipelines.
- Continuous deployment automation for ML models powered intelligent applications with OpenShift GitOps.
- An image repository to version model container images and microservices with Red Hat Quay.
Key use cases for machine learning on Red Hat OpenShift
OpenShift is helping organizations across various industries to accelerate business and mission critical initiatives by developing intelligent applications in the hybrid cloud. Some example use cases include fraud detection, data driven health diagnostics, connected cars, oil and gas exploration, automated insurance quotes, and claims processing.
Red Hat's AI/ML Partner Ecosystem
Transformative AI/ML use cases are occurring across healthcare, financial services, telecommunications, automotive, and other industries. Red Hat has cultivated a robust partner ecosystem to offer complete solutions for creating, deploying, and managing ML and deep learning models for AI-powered intelligent applications.
Success stories
To deliver edge computing data analysis to regional businesses and organizations, NTT East recently launched their Video AI service running on Red Hat OpenShift.
Through NTT’s edge computing initiative, organizations and businesses integrating the latest AI capabilities were able to increase their sales by 144% and decrease shoplifting by 30-40% while improving customer service.
Enterprise-ready AI
The combined power of Red Hat OpenShift and NVIDIA AI Enterprise software suite running on NVIDIA-Certified Systems offers a scalable platform that helps accelerate a diverse range of AI use cases. This platform includes key technologies from NVIDIA and Red Hat to securely deploy, manage, and scale AI workloads consistently across the hybrid cloud, on bare metal, or virtualized environments.